

THz photonic crystal resonators

<u>A. Benz</u>¹, G. Fasching¹, Ch. Deutsch¹, A.M. Andrews¹, K. Unterrainer¹, P. Klang², W. Schrenk², and G. Strasser²

 ¹ Institute of Photonics and Center for Micro- and Nanostructure, *Vienna University of Technology* ² Institute of Solid-State Electronics and Center for Micro- and Nanostructure, *Vienna University of Technology*

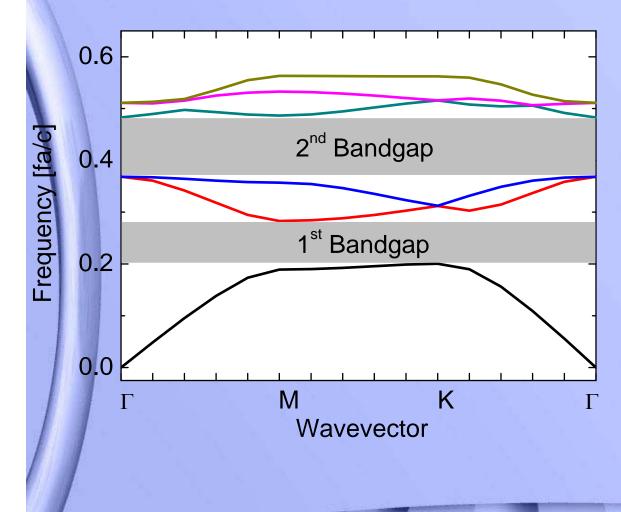
Photonic crystal (PhC) resonators

- THz QCLs with double-metal waveguide
- PhC with full gap for TM-modes used as reflectors
- Further reduction of facet losses
- High-Q cavities
- Modes shifted to bandgap of PhC
- Outside bandgap increased losses

Photonic crystals ↔ THz QCLs

- THz quantum-cascade lasers (QCLs) have reached a high grade of maturity ¹
 - Low frequencies 0.83 THz ²
 - Lasing up to 164 K³
 - Peak output powers of 248 mW⁴
- Compact sources of THz radiation
- Light guiding solutions
- Photonic circuits

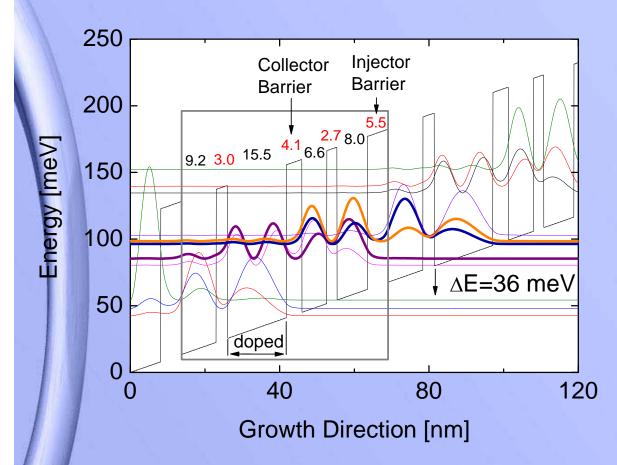
¹ R. Köhler et al., Nature **417**, 156 (2002)
² G. Scalari er al, ITQW 2007


³ B. S. Williams et al., Opt. Exp. **13**, 3331 (2004) ⁴ B. S. Williams et al., Elec. Lett. **42**, 89 (2006)

THz photonic crystals (PhC)

- Integration into bandgap laser suffers from increased surface recombination
- OCL doesn't show that effect, ideal for minituarization
- TM-polarization of QCL-modes
 - Emits in-plane
 - Planar processing technology
 - Results in 2D-PhC
- Large wavelength (60 to 350 μm) of THz-QCLs makes the fabrication easy
 - Period of the PhC in the order of the wavelength

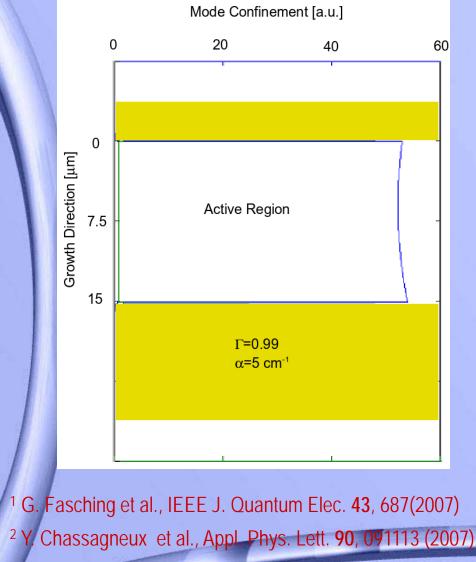
PhC band structure



- 2D-model used ¹
- Dielectric rods surrounded by air
- Rods are infinetely high
- n_{eff}=3.9
- Bandgaps for TM:
 - 1st: .2 to .28
 - 2nd: .37 to .48

¹ S.G. Johnson et al., Opt. Exp. 8 173 (2001)

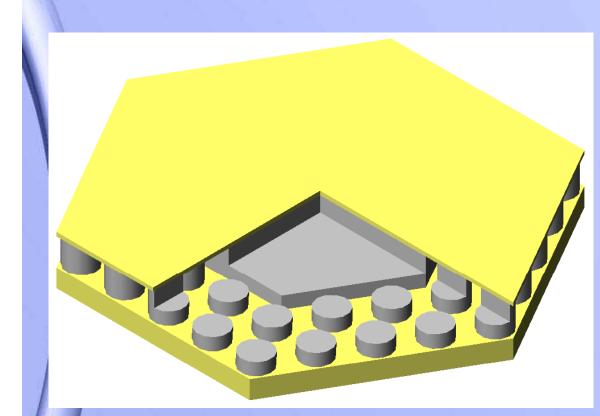
QCL band structure



- LO-phonon
 - depopulation design ¹
- Transition energy 12 meV
- 15 µm active region
- Two different samples used ²:
 - (a) 2.8 THz
 - (b) 2.5 THz

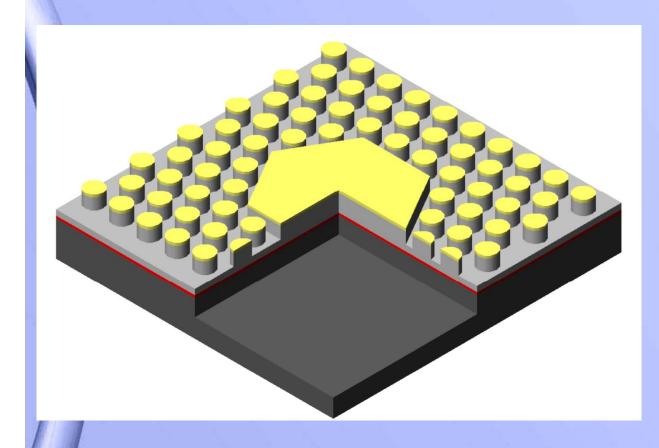
¹ S. Kumar et al., Appl. Phys. Lett. **84**, 2494 (2004) ² A. Benz et al., Appl. Phys. Lett. **90**, 101107 (2007)

Double-metal wave guide

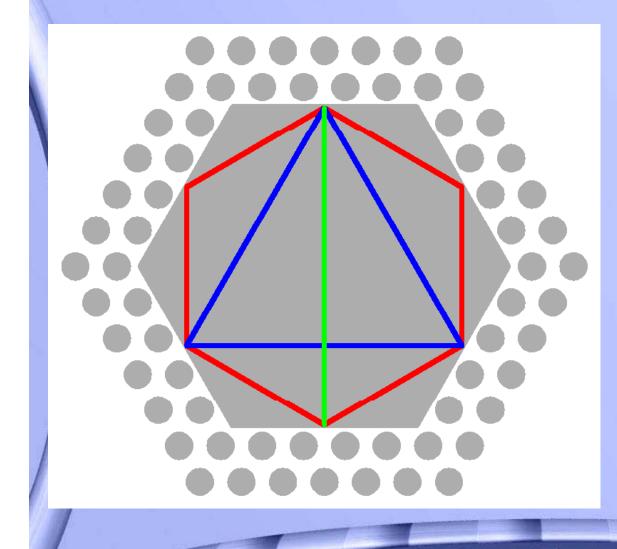


L. A. Dunbar et al., Appl. Phys. Lett. 90, 141114 (2007)

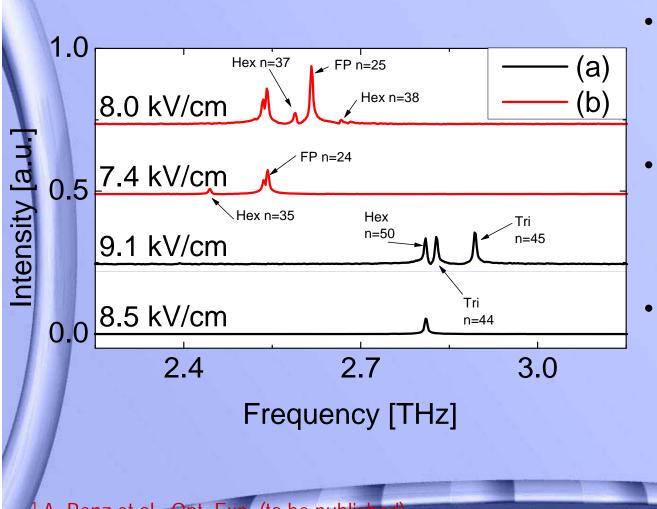
- Confinement near unity
- Low losses, α =5 cm⁻¹
- Only 1st order mode in vertical direction can propagate
- No out-of plane scattering
- Proven to be excellent wave guide for THz-QCLs ^{1, 2, 3}
 - Resonators with subwave length dimensions


PhC resonator

- Emission from facet
- Strong vertical confinment
- No mode leakage, problem for dielectric wave guides
- Lateral confinement by PhC
- Pillars are pumped but not supporting own modes


PhC processing

- Metal deposition, structure by opt. lithographie
- RIE etching
- Wafer bonding
- 2nd metal deposition step
- 2nd RIE etching step


Resonator modes

- Three dominant modes:
 - Fabry-Perot
 - Triangular
 - Hexagonal
- Different optical path leads to different mode spacing

Reference spectra

- Sample (a) emits between
 2.8 and 2.9 THz
- Sample (b) between 2.45 and 2.7 THz
- Samples emit in the gain maximum of the active region

A. Benz et al., Opt. Exp. (to be published)

Summary

- PhC used as a frequency selective mirror
- Double-metal waveguide used
- Mode is forced to propagate through the PhC
- Emission shifted from the maximum gain to band gap of the PhC
- Mirror provides the lowest losses
- Modes identified as resonator modes of the hexagonally shaped core
- No singel mode in general due to broad band gap

Thank you for your attetion!