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1Institute of Microwaves and Photonics,
School of Electronic and Electrical Engineering,

University of Leeds, U.K.

2Faculty of Electrical Engineering,
University of Belgrade, Serbia

∗ email: I.Savic@leeds.ac.uk



I. Savić et al.

Objectives

• To investigate quantum-mechanical (coherent and polaronic) effects in QCLs in a
magnetic field and their influence on:

– Electron populations.
– Output characteristics.

• To develop a quantum-mechanical theory of transport and optical properties of
QCLs in a magnetic field.
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QCLs in a magnetic field

• Discrete electronic structure (Lan-
dau levels).

• Scattering rates are significantly en-
hanced or reduced, depending on the
Landau level (LL) configuration.

• Reduced scattering rates⇒ im-
proved performance:

– Lower threshold current.

– Larger population inversion and
optical gain.
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Electron transport in a cascade - density-matrix approach

• Single particle electron density matricesfi1i2,k =
〈

ĉ†
i1,k

ĉi2,k

〉
, ni1i2 = ∑k′ fi1i2,k′/LxLy:

– The diagonal elements - the occupation probabilities of LLs.

– The non-diagonal elements - the quantum-mechanical coherence between LLs.

• The Hamiltonian:Ĥ = Ĥ0+ Ĥel + Ĥep (non-interacting electrons, the electron-light
interaction, the electron-LO phonon interaction).

• Non-interacting electrons:

d
dt

ni1i2

∣∣
Ĥ0

=
1
i~

(Ei2−Ei1)ni1i2.

• Interaction of electrons withz-polarized light: Landau index conserved.

single particle DM
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Interaction with LO phonons

• Quantum-kinetic (non-Markovian) description:

– Phonon-assisted matricessi1i2
k,q,k′ =

〈
ĉ†

i1,k
b̂qĉi2,k′

〉
.

single particle DM
.....

phonon assisted DM

γ

– Broadening of LLs represented by a phenomenological damping constantγ.

•Markovian description:

– Adiabatic elimination of phonon-assisted matrices⇒ the quantum-kinetic equa-
tions reduce to the Markovian equations.

– Broadening of LLs - a Lorentzian with the FWHM of2~γ.
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Interaction with LO phonons
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• The semiclassical limit (non-diagonal matrix elements neglected)⇒ the Markovian
equations reduce to the Boltzmann equations.

• The tight-binding description and the periodicity of the quantities involved were
used in all three approaches.
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QCL structure

• Three-level scheme, LO phonon depopulation of the lower laser level, no injector.

• THz GaAs/Al0.3Ga0.7As, laser transition∼ 15.2 meV.

• Dominant influence of the electron-LO phonon interaction on the populations.
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The conduction band profile of the QCL.



I. Savić et al.

Populations

• Similar values of populations and their dependence onB from all three approaches.

• The differences due to coupling between populations and polarizations in the Marko-
vian approach (among populations, polarizations and phonon-assisted matrices in
the non-Markovian approach).
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The electron population over QCL states (all Landau levels) vs magnetic field. Left:~γ = 1 meV. Right:~γ = 2 meV.
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Polarizations

• Finite values of polarizations in the steady state.

• The largest polarization∼ 10%.
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magnetic field.



I. Savić et al.

Nature of electron transport - coherent vs incoherent

• Quantum-mechanical (Markovian and non-Markovian) interpretation - coherent cur-
rent.

J =−e
d

N

∑
i1,i2=1

[
vi1i2ni2i1 +vi1(i2+N)n(i2+N)i1 +v(i2+N)i1ni1(i2+N)

]
,

vi1i2 =
i
~
〈i1| [Ĥ, ẑ] |i2〉=

i
~
(Ei1−Ei2)zi1i2 +

1
m∗eARδi1,i2.

• Semiclassical interpretation - incoherent current.

J =
e
d




N

∑
i=1

2N

∑
f=1

(i< f )

(zf −zi) [niWi f (1−αBnf )−nfWf i(1−αBni)]


 .

Ref.: S. C. Lee, F. Banit, M. Woerner, and A. Wacker, Phys. Rev. B73, 245320 (2006).
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Current

• Similar values of the current and its dependence onB in all three approaches.

• Relatively small coherences in the steady state.
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Current density vs magnetic field dependence. Left:~γ = 1 meV. Right:~γ = 2 meV.
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Optical gain - general considerations

• Quantum-mechanical description:g(ω)∼ Im[χ(ω)]∼ Im[J(ω)].

– Non-Markovian approach:

∗ Direct optical transitions - the gain linewidth determined by coupling to the
LO phonon assisted transitions.

∗ LO phonon assisted optical transitions∼ 1
Ei2±~ωLO−Ei1±~ω−i~γ - the linewidth is

of the order of∼ 2~γ.

– Markovian approach:

∗ Direct optical transitions∼ 1
Ei2±~ωLO−Ei1−i~γ - the linewidth determined by the

scattering processes.

• Semiclassical description: Fermi’s golden rule.

– Direct optical transitions - the linewidth taken to be2~γ.
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Optical transitions
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Optical gain - non-Markovian case

• The gain linewidth for the energies corresponding to the laser transitions is consid-
erably smaller than for the energies around one LO phonon energy.

• Signatures of the polaron shift.
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Optical gain vs energy for a magnetic field of4 T and~γ = 1 meV. Left: The energy range is in the vicinity of the optical
transition energies. Right: The energy range is in the vicinity of one longitudinal optical phonon energy.
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Optical gain - non-Markovian case

• Additional peaks for energies close to one LO phonon energy.

• A non-trivial interplay between the resonant LO phonon assisted transitions and
resonant direct optical transitions for energies close to LO phonon energy.
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Optical gain vs energy for a magnetic field of6 T. Left: The energy range is in the vicinity of the optical transition energies.
Right: The energy range is in the vicinity of one longitudinal optical phonon energy.
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Optical gain - Markovian case

• Resonant scattering terms present throughout the energy range of interest.

• Large linewidth for the energies corresponding to the laser transitions and the ener-
gies around one LO phonon energy.
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Optical gain vs energy for a magnetic field of4 T and~γ = 2 meV. Left: The energy range is in the vicinity of the optical
transition energies. Right: The energy range is in the vicinity of one longitudinal optical phonon energy.
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Summary

• Quantum-mechanical theory of gain and electron transport in QCLs in a magnetic
field based on the density-matrix formalism:

– Non-Markovian.

– Markovian.

– Boltzmann.

• Similar populations.

• Finite, but relatively small coherences.

• Comparable values of the current densities, despite different interpretations of the
origin of the transport processes.

• Narrow linewidths for laser transitions and evidence of polaron formation in the
non-Markovian treatment, in contrast to the Markovian and Boltzmann predictions.

Ref.: I. Savíc, N. Vukmirovíc, Z. Ikoníc, D. Indjin, R. W. Kelsall, P. Harrison, and V. Milanović, cond-mat/0702508,
accepted for publication in Phys. Rev. B.


