High quantum-efficiency GalnAs/AI(Ga)AsSb quantum cascade lasers for the 3-5 µm wavelength range

<u>Quankui Yang</u>, C. Manz, W. Bronner, Ch. Mann, F. Fuchs, K. Köhler, and J. Wagner

Fraunhofer Institute for Applied Solid State Physics (IAF), D-79108, Freiburg, Germany

Motivation: high-power high-efficiency λ ~ 3 - 5 μm QC lasers

- For a variety of applications, such as remote sensing and infrared countermeasures, highpower high-efficiency QC lasers are required
- High-power lasers with $\lambda < 5\mu m$ still challenging for QC lasers

Outline:

- QC lasers for 3-5 µm: Material systems
- Growth and processing
- To achieve high quantum-efficiency QC lasers at $\lambda \sim 3.7$ -3.9 µm
 - GalnAs/AlAsSb QC lasers emitting at $\lambda \sim 4.5 \ \mu m$
 - $-\lambda \sim 3.7-3.9 \ \mu m$ GalnAs/AlAsSb QC lasers based on 3-QW active region
 - High peak power (10 W) GaInAs/AlGaAsSb QC lasers
- Summary

Material Systems with Large Conduction Band Discontinuity

Fabrication of Quantum Cascade Lasers at Fraunhofer IAF

- 2" wafer technology
 - MBE: active regions and separate confinement layers
 - MOVPE: overgrowth of InP cladding and contact layers
 - processing into mesa-waveguide structures (edge-emitters) $w = 7 34 \mu m$
 - cleavage, facet coating, mounting, etc.

≈ 2.7 μm ≈ 3.0 μm w = 7 – 34 μm L = 1 – 3 mm

5

Above RT GalnAs/AIAsSb QC lasers: Design

GalnAs/AIAsSb QC lasers operating up to 400 K

Q. Yang et al., Appl. Phys. Lett. 86, 131107 (2005)

nhofer Institut Angewandte Festkörperphysik 7

8

Q. Yang et al., Appl. Phys. Lett. 88, 121127 (2006)

Short-wavelength ($\lambda \sim 3.7$ -3.9 µm) GaInAs/AIAsSb QC lasers

Q. Yang et al., Appl. Phys. Lett. 88, 121127 (2006)

9

 Quaternary barrier (AlGaAsSb) instead of ternary barrier (AlAsSb): lattice-matched

 $Ga_{0.47}In_{0.53}As /$ $AI_{0.67}Ga_{0.33}As_{0.55}Sb_{0.45}$ $\Rightarrow \Delta E_{c}(\Gamma) \approx 1 \text{ eV}$

⇒ better tunneling probability

•

Slightly diagonal transition

High peak power λ ~3.7 µm GaInAs/AIGaAsSb QC lasers

At 77 K: P_{max} > 8 W/facet (pulsed, uncoated facets),

Total wall-plug efficiency η_{max} = 23%, η_{D} (total) = 1605%, η_{D} (per stage) = 54%₁₁

High (peak) power capability of GalnAs/AIGaAsSb QCL @3.7 µm

Summary:

- Summary
 - GalnAs/AlAsSb QC lasers ($\lambda \sim 4.5 \mu m$) operating up to 400 K
 - **3-QW vertical-transition (** $\lambda \sim 3.7-3.9 \mu$ m) GalnAs/AlAsSb QC lasers
 - High peak power (10 W, pulsed operation at 77 K) GaInAs/AlGaAsSb QC lasers demonstrated at λ ~ 3.7 μm

• Financial support: EU project "ANSWER"

Future R&D challenges of GalnAs/AIAsSb QC lasers

- Gain spectrum is still significantly broader than for comparable GaInAs/AlInAs QC lasers (→ severely limits high-temp. & cw performance)
 - \rightarrow to be solved by improved MBE growth?
 - → inherent to QC active region with group-V constituents changing at well/barrier interface?
- Which are the short-wavelength limitations of GaInAs/AIAsSb QC lasers?
 (Γ-X scattering in the well and/or barrier?)

