Directivity of sub-wavelength wire lasers

E.E. Orlova

Institute for Physics of Microstructures RAS

Acknowledgements:

Experimental investigation of the far field of THz cascade lasers:

T.O. Klaassen, J.N. Hovenier, A.J. Adam, I. Kašalynas, J.R. Gao

Kavli institute of Nanosciences, TU Delft, The Netherlands

THz cascade lasers:

B.S. Williams, S. Kumar, Q. Hu MIT, Cambridge, Massachusetts, USA J. L. Reno

Sandia National Laboratories, Albuquerque, USA

Wire lasers

High directivity laser with subwavelength aperture.

Is it possible?

Methods used to improve directivity of lasers with small transverse dimensions

- External optics (lenses, horn antennas)
- Emission is coupled out though the substrate

Effective aperture is enlarged

-Emission from the surface parallel to active enlarge layer (grating on top of the structure) Zh. I. Alferov, V. M. Andreev, S. A. Gurevich R. F., Kazarinov, V. R. Larionov, M. N. Mizerov, and E. L., Portnoy, IEEE J. Quant. Electron. QE-11, 449 (1975).

- A set of lasers as a phased array

Local laser excitation for applications in biology, medicine, effective coupling of THz QC lasers, lasers with higher frequencies applications in optical memory, quantum information etc.

Local laser excitation for applications in ology, medicine, ffective coupling THz QC lasers, sers with higher frequencies applications in ptical memory, quantum information etc.

However!

What happens when $a < \lambda$?

Waveguide of the THz quantum cascade laser

MIT, Sandia, 2003

Structure view

z: *L*=1180μm. x: *a*=40μm y: *h*=10μm

First result: narrow maximum in the far field of quantum cascade laser 1180/40/10 μ m, $\lambda \approx 100 \mu$ m, $\theta < 0.1 \pi$

Equivalent currents approach:

Far field is expressed in terms of equivalent current produced by the laser mode within the laser medium with $\varepsilon \neq 1$:

$$\mathbf{J}_{eq} = \mathbf{J}_{c} + \frac{j\omega(\varepsilon - 1)}{4\pi}\mathbf{E},$$

Wire model of laser mode structure

Exact solution for $L \rightarrow \infty$ - Bloch functions:

$$J_{eq}^{i} = \tilde{J}^{i}(\rho, z) (\exp\left(jqz\right) \pm \exp\left(-jqz\right))$$

Boundary conditions at |z|=L/2

Edge effects are neglected ($L >> a, L >> \lambda$)

Discrete spectrum of ω

Far field of wire laser

Transverse factor

This term is analogous to that of aperture methods of far field calculation

Longitudinal factor

Sinchronouse modes – narrow beam:

When $N_F = a^2/2\lambda L \ll 1$ $\Theta <<\lambda/a$

Theory/experiment for q > k

Theory/experiment for q > k

Far and near field of infinitely thin wire laser

q > k "cabbage"

q = k: "flower bulb"

Conditions of realization for syncrhonized modes q = k (c=c_L)

Grating with period $2\pi/k$?

Disperion relation inside laser medium: $q^2 = k^2 n^2 - k_{\perp}^2$

Longitudinal wave vector can be changed by changing transverse parameters of the structure

Properties of syncrhonized modes $q = k (c=c_1)$

Dispersion relation: $k_1^2 = q^2 - k^2 = 0$

- no exponential decay outside laser medium

Transverse field distribution is described by quasi-static equation: $\Delta \prod = 0$

Power decay is determined by system geometry:

Cylinder monopole –

 $E \sim 1/\rho \rightarrow \rho(P=P_{\star}/2) = \infty$ effective aperture for infinite

wire is infinite

Cylinder dipole –

 $E \sim 1/\rho^2 \rightarrow \rho(P=P_{\star}/2) = \sqrt{2a}$ effective aperture is subwavelength

Conclusions:

- Far field of subwavelength wire lasers

L >> a $L >> \lambda$ $a < \lambda$

is determined by interference of radiation from longitudinal mode distribution

- High directivity can be achieved from the modes of subwavelength laser at synchronism of longitudinal phase velocity with that of light with beam width :

$$\Theta \simeq \sqrt{\lambda/L}$$

- Synchronous modes have relatively low confinement; realization of narrow beam emission from synchronous modes requires mode selection for single mode generation

Emission in the plane parallel to the axis

Far field of travelling wave antenna at phase synchronism

Far field amplitude of one dimensional array

Far field amplitude of one dimensional array

