MBE Growth of Terahertz Quantum Cascade Lasers

Harvey Beere

Cavendish Laboratory J J Thomson Avenue Madingley Road Cambridge, CB3 0HE United Kingdom

People involved

Harvey Beere, Chris Worrall, Josh Freeman, Sean Whelan, David Ritchie CAMBRIDGE

Jesse Alton

Stefano Barbieri, Carlo Sirtori

TeraView

Université Paris 7

People involved

Harvey Beere, Chris Worrall, Josh Freeman, Sean Whelan, David Ritchie UNIVERSITY OF

TeraView

Université Paris 7

Stefano Barbieri, Carlo Sirtori

NATIONAL ENTERPRISE FOR NANOSCIENCE AND NANOTECHNOLOGY

Jesse Alton

Presentation Outline

- Introduction
- Issues associated with growth
- Robustness of Active Region designs
- Minor tweaks to Active Region
- Transfer of structures between growth reactors
- Summary

The Unipolar Semiconductor Laser

"materials by design": band structure engineering through molecular beam epitaxy

- 1971: amplification from intersubband transitions is first postulated by R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. p5, (loffe)
- 1994: QCL is first experimentally demonstrated in MIR by J. Faist et al. Science 254, p553 (Bell Labs)
- 2002: QC-lasers outperform other mid-IR lasers in many aspects
 R. Köhler et al. Nature 417, p156 (SNS Pisa/Univ Cambridge)

What Grower Sees

What Grower Sees

Final QCL device:

90-250 periods active region 12-18μm thick 1200 - 1500 layers Some barriers ~6Å (~2MLs) 12-18hrs growth duration

What Grower Sees

Final QCL device:

90-250 periods active region 12-18μm thick 1200 - 1500 layers Some barriers ~6Å (~2MLs) 12-18hrs growth duration

PUSHING BOUNDARIES OF GROWTH TECHNIQUES

- growth rate calibration
- growth rate stabilty
- inteface roughness

accuracy of layer thickness

Molecular Beam Epitaxy

Precise semiconductor growth technique

- extensive range of source materials
- layer thickness to monolayer accuracy
- high degree of control on layer composition & doping level
- abrupt interfaces
- little interface diffusion

Theoretical growth rate tolerances

Percentage variation of growth flux from desire rates

GaAs growth rate within +2% and –1% AIAs growth rate within +10% and –5%

Beere et al., J Cryst Growth 278, p756 (2005)

X-ray spectra of THz laser

- Clear satellite structure in good agreement with simulation
- Confirms excellent growth stability over 12 hour growth duration

ITQW07

• Thickness variation across 2" wafer is less than 2%

Terahertz Quantum Cascade Laser

- Single-mode emission from a Fabry-Perot Cavity
- Emission at 18.4meV: 4.44THz Good agreement with design

Structure Reproducibility

Good agreement design thickness and measured value (-1% to +2%)

Structure Reproducibility

• Emission at ~18.2meV: 4.4THz - Good agreement with design UNIVERSITY OF CAMBRIDGE ITQW07

Robustness of Active Region Design

Calculated emission frequency vs total AR thickness

Again ±0.5meV emission energy equates ~ ±2% thickness

- Single plasmon waveguide V_{align} ~2v: T_{max} ~95K: P_{max} ~90mW
- Series structure growths -5% to +5%

- Actual range (-3%, +5%) \Rightarrow ~0.4THz (~2.5meV)
- Systematic route to tuning emission frequency
- Could possibly extend frequency range further (>5%)?

• Single plasmon waveguide 3mm x 0.25mm ridge waveguide

 $J_{th} 103 \text{ Acm}^{-2} - V_{align} \sim 1.8v: T_{max} = 67K \text{ Output Power} \sim 22mW \text{ f} \sim 2.00THz$ WIVERSITY OF ITQW07

- Similar 'linear' trend emission frequency against AR thickness
- Limited range (~3%) explored to date \Rightarrow ~0.06THz span
- Investigate extending frequency further!

- Bound-to-continuum design very robust!
- Possible systematic route to tuning frequency

how far can we realistically exploit this method?

CAMBRIDGE

1.99THz (8.25meV) – Singlemode (Frequency identical to Reference)

1.88THz (7.79meV) – lower frequency compared 2.0THz reference

Overlap strength between lower state and upper, injector

Thinner injector barrier no longer produces isolated upper and injector states STRUCTURE LASES FROM INJECTOR TO LOWER STATE ⇒ LOWER FREQUENCY

Device operation severely degraded

1.94THz (8.04meV) – Multimode: just above threshold 1.96THz (8.10meV) – Multimode: just before NDR

Higher current kills device operation

2THz Reference (V305) double-metal THz QCL devices

ITQW07

• Single plasmon waveguide $T_{max} \sim 67 K$

High doping (V307) double-metal THz QCL devices

Slightly degraded performance compared to single plasmon

- QCL performance sensitive to structure

- doping level critical (especially single plasmon waveguide)
- ensure variations does not completely change design
- Growth needs to be accurate!

• Variation due to growth or fabrication?

VG wafers consistently lower frequency (~0.05THz)

- VG wafers consistently higher frequency (~0.1THz)
- Observed frequency differences Barrier profile/thickness

ITQW07

- Growth interfaces

- Successful transfer of multiple AR designs
- Similar performance levels (P, T, J_{th})
- Different frequency observed for same AR thickness
 - under investigation

Frequency Span

• Over 60 working QCLs, incorporating in excess 30 different ARs

 Since 2002 frequency spans 0.95THz – 4.8THz (300μm – 62μm)
 UNIVERSITY OF CAMBRIDGE
 ITQW07

- Highlighted issues associated with growth
- Study of Active Region robustness presented
- Minor tweaks to Active Region
- Transfer of structures between growth reactors
- Span of frequencies so far

