Quadratic autocorrelation and photocurrent saturation study in two-photon QWIPs

H. Schneider, O. Drachenko, S. Winnerl, and M. Helm

Institute of Ion-Beam Physics and Materials Research, Forschungszentrum Dresden Rossendorf, Dresden, Germany

M. Walther

Fraunhofer-Institute for Applied Solid State Physics, Freiburg, Germany

Institute of Ion-Beam Physics and Materials Research • www.fzd.de • Mitglied der Leibniz-Gemeinschaft

Introduction

- Free-electron laser (FEL) at ELBE
- Two-photon QWIP
- Interferometric autocorrelation of FEL pulses
- Saturation of two-photon QWIP
- Room-temperature operation ?
- Conclusion

ELBE in Dresden

ELBE: Electron Linac with high Brilliance and low Emittance FELBE = FEL @ ELBE

H. Schneider • ITQW07

Free-Electron-Laser

Z

- Wavelength range $\lambda = 4 200 \,\mu\text{m}$ \Rightarrow 1.5 – 80 THz (FEL | & II)
- Pulse width 0.5 - 30 ps depending on λ

- Pulse energy 0.1 3 µJ 10 kW 1 MW peak power
- Spectral width $\Delta \lambda / \lambda = 0.4 1.6 \%$

Resonant two-photon QWIP

- photocurrent ~ (power density)² stronger signal if two pulses overlap in time
- role of intermediate state

resonantly enhanced two-photon absorption incoherent (sequential) absorption

Standard QWIP

H. Schneider et al., Opt. Lett. 30, 287 (2005).

	λ = 10 μm- design	λ = 8 μm- design
QWs	GaAs	In _{0.10} Ga _{0.90} As
Barriers	Al _{0.33} Ga _{0.67} As	Al _{0.38} Ga _{0.62} As
QW width	7.6 nm	6.8 nm
Barrier width	46 nm	
Doping	4*10 ¹¹ cm ⁻² (Si)	
Periods	20	

• growth by MBE

- processing into $(120\mu m)^2$ and $(240\mu m)^2$ mesas
- light coupling via 45° facets

Optical excitation with cw-CO₂ laser

- huge two-photon absorption coefficient $\beta = 1.3^{*}10^{7} \text{ cm/GW}$
- P > 0.1 W/cm²: $I_{ph} \sim P^2$
- $P < 0.1 \text{ W/cm}^2$: $I_{ph} \sim P$ $I = RP + SP^2$
 - R, S responsivities
- linear contribution due to thermal occupation of state |2>
 - → limited operation temperature for quadratic detection

H. Schneider et al., Opt. Lett. 30, 287 (2005).

- Introduction
 - Free-electron laser (FEL) at ELBE
 - Two-photon QWIP
- Interferometric autocorrelation of FEL pulses
- Saturation of two-photon QWIP
- Room-temperature operation ?
- Conclusion

Interferometric autocorrelation of FEL pulses

Appl. Phys. Lett. 89, 133508 (2006)

- in (a): $\rightarrow \Delta t \Delta v = 0.51$
- Gaussian limit $\Delta t \Delta v = 0.44$

10µm device, 75 K, 2 V, 0.3 mW

2

- Introduction
 - Free-electron laser (FEL) at ELBE
 - Two-photon QWIP
- Interferometric autocorrelation of FEL pulses
- Saturation of two-photon QWIP
- Room-temperature operation ?
- Conclusion

- quadratic behavior at low power
- saturation at ~100 kW/cm²
 ~1.3 kA/cm²
- different models for saturation tested

 distortion-free autocorrelation only at low power

- Photocurrent $I = R(F)P + S(F)P^2$ assume: gain ~ electric field *F*, thus *R* ~ *F* and *S* ~ *F*
- Linear screening (as a function of *I*): $\rightarrow I = (1 - I / I_{sat})(\tilde{R}P + \tilde{S}P^2)$
- Logarithmic screening only "thermal" current I_{th} , at 1st barrier assume $I_{th}(F_1) = I_0 \exp(\alpha F_1)$ $\rightarrow I = (\ln(I_{sat}) - \ln(I)) \cdot (\tilde{R}P + \tilde{S}P^2)$

Appl. Phys. Lett. 89, 133508 (2006)

- better agreement for log. screening
- ratio is independent of S for R = 0
 → I_{sat} is the only fit parameter!

- Introduction
 - Free-electron laser (FEL) at ELBE
 - Two-photon QWIP
- Interferometric autocorrelation of FEL pulses
- Saturation of two-photon QWIP
- Room-temperature operation ?
- Conclusion

Temperature limit for quadratic detection increases with photon energy!

- two-photon QWIP is suitable for quadratic autocorrelation measurements of FEL pulses
- saturation of two-photon QWIP
 - induced by space charges inside the active region similar as for "standard" QWIP
- room-temperature operation
 - maximum operation temperature limited by linear contribution and photocurrent saturation

