High wall plug efficiency THz QCLs: investigation of the optical, electronic and thermal performance

Miriam Serena Vitiello,

Gaetano Scamarcio, Vincenzo Spagnolo

Regional Laboratory LIT³, CNR - INFM, Physics Dept., University of Bari, Italy

Acknowledgements:

Q. Hu

S. Kumar

C. Sirtori

S. Dhillon

Università di Bari

CNR-INFM Regional Lab

Outline

- THz Quantum Cascade Lasers (basic concepts and state of art)
- Demonstration of high power and high wall plug efficiency THz QCLs
- ♦ Real-time μ -probe photoluminescence →
 - Thermal self-calibrated approach to measure the wall-plug efficiency of QCLs
 - Local lattice temperature (facet + top)
 - Electronic temperature and electron-lattice coupling
 - Dominant role of nm-size abrupt interfaces TBR
 - Time resolved thermal measurements
- ♦ µ-probe Raman spectroscopy →
 - Non-equilibrium phonon population

THz QCLs-State of art

<u>Crucial points in the THz range:</u>

Laser emission at E < ELO</p>

> Huge free-carrier absorption (~ λ^2)

Non-radiative lifetimes of intersubband transitions very short Pisa /(Cavendish) Neuchâtel / (Neuchâtel) MIT / Sandia Teraview / Cavendish TU Vienna / (Bell Labs) NRC - Ottawa Paris 7 / Thales Bari / Commercial

Quantum designs

- Chirped superlattices
- Bound-to-continuum
- LO-phonon coupled QW
- Interlaced

State of art - Performance

- T_{max} = 164K (pulsed) 117K (CW)
- v = 1.2 THz
- P_o = 245 mW @ T=4K
- $\cdot \eta_{w(max)} \le 2\%$

Challenges: Increase the maximum CW operating temperature, the optical power out, the <u>wall-plug efficiencies</u>

High Power and High Wall-Plug Efficiency THz QCLs

• Slightly modified version of the bound- to-continuum design (*Barbieri et al. APL 85, 1674 2004*) • depopulation of the lower radiative state (1) via miniband • upper radiative state (b) localized state in the middle of the minigap. • $E_{b1} = 11.8 \text{ meV}$

More diagonal radiative transition and slightly reduced dipole matrix element $z_{b1} = 9.2 \text{ nm}$

- Reduced non radiative scattering of the upper state into the miniband
- Reduced coupling from the injector into the lower radiative state \rightarrow improved injection efficiency η_i

Fabrication and Optical Testing

M.S.Vitiello, G.Scamarcio, V.Spagnolo, S.Dhillon and C.Sirtori 90, 191115 (2007)

- •MBE growth
 - Commercial provider
- Surface-plasmon optical waveguide
 - \succ Wet etching
 - ➢ Ni/Ge/Au/Ni/Au alloyed bottom contact
 - \rightarrow Ge/Au alloyed metal stripes
 - \blacktriangleright Ni/Au top not alloyed contact for mode confinement and backside metalization

0 n 2.8 3.0 2.6 υ (THz)

CW performance

P_o ~ 24 mW @ T_{H1} = 20K

Slope efficiency ~ 0.34 W/A

State of art performance

- High power (~ 100 mW) a.c. •
- Slope efficiency ~ $0.4 \text{ W/A} \sim 3 \text{ times}$ • improvement - a.c.
- Record wall-plug efficiency (~ 6 %) •
- Differential quantum efficiency: 34 photons • for injected electrons at 40 K

$\mu\text{-}probe$ spectroscopy on operating QCLs

PL spectra - 2.83 THz QCLs

Wall-plug efficiency- Assessment issues

M.S.Vitiello, G.Scamarcio, V.Spagnolo, S.Dhillon and C.Sirtori 90, 191115 (2007)

$$\begin{split} P_{in} &= P_{optical} + P_{thermal}; \quad \eta_{W} = P_{opt} / P \\ \eta_{W} &= 1 - \Delta T / (P_{in} \times \widehat{(R_{L})}) \\ \hline Thermal \ resistance \end{pmatrix} \end{split}$$

- Conventional optical measurements in THz QCLs affected by
 - Large beam divergence
 - small collection efficiency $\eta_c \sim 0.3$
 - detector calibration

Our self-calibrated approach

- Thermometric properties measured by μ -PL
- Deviations from the thermal resistance trend in the lasing range $\rightarrow P_{thermal} \rightarrow \eta_W$
- $\eta_{Wmax} = (5.5 \pm 0.4) \%$

Injection Efficiency

experimental $(\eta_w) = 2 \frac{dP_o}{dI} \frac{1}{V - \Lambda V} \left(1 - \frac{I_{th}}{I}\right)$ $\frac{dP_o}{dI} = \frac{1}{2} N_P \frac{hv}{a_{\perp}} \frac{\alpha_m}{\alpha_{\perp} + \alpha} \tau \qquad \text{where} \qquad \tau = \eta_i \left| 1 - \frac{\tau_1}{\tau_2} \left(\frac{1}{\eta_1} - 1 \right) - \frac{\tau_1}{\tau_2} \left| \frac{\tau_2}{\tau_1 + \tau_2 \left[1 - \left(\tau_1 / \tau_2 \right) \right]} \right| \right|$ From our data $\longrightarrow \frac{\alpha_m}{\alpha_m + \alpha} \tau = 0.77 \pm 0.21$ As a a rough estimate, assuming: $\begin{cases} \tau_1 << \tau_2, \tau_{12} \text{ as confined from the discontinuity} \\ \text{in the differential resistance} \\ \alpha_w \text{ in the range 2-6 cm}^{-1} \end{cases}$

$$\label{eq:amplitude} \begin{tabular}{l} \label{eq:amplitude} \begin{tabular}{l} \label{eq:amplitude} \label{eq:amplitude} \begin{tabular}{l} \label{eq:amplitude} \label{eq:amplitude} \label{eq:amplitude} \end{tabular} \label{eq:amplitude} \end{tabular} \label{eq:amplitude} \end{tabular} \label{eq:amplitude} \label{eq:amplitude} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{l} \label{eq:amplitude} \end{tabular} \end{tab$$

-Internal quantum efficiency (LI)

-Gain modeling

Electronic and lattice temperatures -2.83 THz QCLs

M. Vitiello, G. Scamarcio and V. Spagnolo, J. Nanophoton., 1, 013514 (2007)

- Lattice temperature \rightarrow PL shift
- Electronic Temperature \rightarrow high energy slope analysis
- Features of μ -PL spectra in THz QCLs
 - both ground and <u>excited</u> subbands
 - band-to-band and/or excitonic transitions

The electrons in the active region share the same T_e $R_e = 12.0 \text{ K/W} > R_L = 8.37 \text{ K/W}$

Most of the electrons dissipate excess energy via slow <u>acoustic</u> <u>phonons</u> assisted transitions

Cross-plane thermal conductivity in THz QCLs

M. Vitiello, G. Scamarcio and V. Spagnolo, submitted to JSTQE (2007)

- Lack of lateral heat flow channels \rightarrow T increases monotonically in the active
- Heat flux $100\% \rightarrow$ substrate
- k_⊥ extracted directly from the experimental data, taking advantage from the monotonic trend of the temperature profile and the absence of lateral heat extraction channels

$$k_{\perp} = \left(\frac{T_{\max}(active) - T(sub)}{P} \times \frac{S}{d}\right)^{-1}$$

Bulk and Interface conductivity in THz QCLs

 k_{\perp} decreases monotonically as T is decreased

 $k_{\perp} \sim$ one order of magnitude lower than the relevant bulk ones at comparable T

- TBR arises from the mismatch in:
 - Acoustic impedances (mass density x sound velocity)
 - Phonon energy dispersion and densities of states
- If N small \rightarrow interface contribution to R is negligible
- In QCLs:
 - bulk contribution never accounts for the measured values
 - Interface thermal resistivity dominant

Thermal boundary resistance

Comparing experimental k_{\perp} with calculated bulk contributions \rightarrow TBR

TBR decreases with temperature

Why?

- low T $\rightarrow \lambda$ phonon long \rightarrow umklapp scattering frozen out and boundary scattering dominates
- T increases $\rightarrow \lambda$ phonon decreases and ~ size of the defects \rightarrow defect scattering dominates
- high $T \rightarrow \lambda$ phonon shorter (larger wavevectors) \rightarrow umklapp scattering dominant

Time resolved μ -PL

ADVANTAGES

Low mean power dissipated

Investigation of QCL
thermal dynamics under
<u>pulsed operation</u> well above
laser threshold and roll-off
QCL dynamics at very high
operating temperatures

OUTCOME

Heat diffusion dynamics

Thermal dynamics under pulsed operation @ T = 80K

< T > = T_{max} × duty + T_{off} × (1-duty) < P > = P \times duty

Post-pulse temperature decay

Duty cycle	PF (kHz)	PW (µs)	$\tau_1(\mu s)$	$\tau_2(\mu s)$
1.2%	40	0.3	0.15	2.2
2%	40	0.5	0.23	2.3
4%	40	1	0.24	2.5
6%	40	1.5	0.27	2.6
8%	40	2	0.33	2.7

- Bi-exponential decay
 [Evans, Indjin, Harrison, Ikonic et al., 2006]
- Short time constant $\tau_1 \rightarrow$ Heat extraction from the active region
- Long time constant $\tau_2 \rightarrow$ Heat extraction from the substrate

PW increases $\rightarrow \tau_1, \tau_2$ increase due to the temperature dependence of the thermal conductivity

Hot-phonons in resonant-phonon THz QCLs

G. Scamarcio, M. Vitiello, V. Spagnolo, S. Kumar, B. Williams and Q. Hu, Physica E, in press (2007)

- THz QCLs allow to study all regimes below and above laser threshold
- Superlinear increase of hot phonon population (N'= N-N₀) with power \rightarrow *stimulated emission of phonons (?)*

What about LO phonons ?

G. Scamarcio, M. Vitiello, V. Spagnolo, S. Kumar, B. Williams and Q. Hu, Physica E, in press (2007)

- Raman selection rules requires backscattering from the top facet
- Poorer device efficiency and higher laser threshold does not allow to study above lasing regime

Phonon lifetime and relaxation rate

Rate equation arguments \rightarrow $\tau_{p} \cdot r = \frac{n_{hot}}{P} \cdot \frac{\hbar \omega}{6\pi^{2}} A d \cdot [k_{Max}^{3} - k_{Min}^{3}]$

- $\tau_p \cdot r \sim const$ if n_{hot} were proportional to P
- Phonon lifetime (τ_p) decreases with $T_L \rightarrow$ in our case phonon relax. rate (r) increases (!)
- Characteristics of phonon stimulated emission
- However, no line narrowing observed (?!?)

Summary

- Demonstration of high power and high wall-plug efficiency (η_w = 5.5%) bound-to-continuum 2.83 THz QCLs
- Development of a new self calibrated experimental approach to measure the total wall-plug efficiency of THz QCLs: estimation of the injection efficiency
- \checkmark µ-probe optical spectroscopy in THz quantum cascade lasers
 - Temperature dependence of the cross-plane thermal conductivity
 - Influence of thermal boundary resistance
 - Time-resolved thermal measurements
 - Non-equilibrium phonon generation

Running:

- Include knowledge on microscopic thermal properties in the design of active regions showing low TBR

- Stimulated emission of phonons