Thermal and electronic analysis of GaInAs/AlInAs mid-IR QCLs

Gaetano Scamarcio Miriam S. Vitiello, Vincenzo Spagnolo, Antonia Lops

> Regional Laboratory LIT³, CNR - INFM Physics Dept., University of Bari, Italy

T. Gresch, J. Faist University of Neuchatel \rightarrow TU Zurich

Acknowledgements:

Q. Yang, J. Wagner Fraunhofer Inst. Freiburg

Università di Bari

Motivation

- > 10 years progress in the quantum design of *active regions* \rightarrow high performance QCLs (CW, RT, single mode, high power, at selected mid-IR λ 's)
- Real-world applications wants improved performance:
 - e.g. ppb/ppt QCL-based sensor systems compact/portable, affordable, batteryoperated, ...
- "Typical" QCLs have:
 - Large electrical power (~ 10 W)
 - Low wall-plug efficiencies at room temperature (single-digit %)
- **Heat** generated in the active not efficiently extracted from the device
 - Physical limits \rightarrow (thermal boundary resistance) (# interfaces)

RT CW mid-IR QCLs fabrication technologies

Electroplated QCLs

InP-buried QCLs

Epilayer-down QCLs

• Au top contact layer width > 4 μ m

- Lateral heat extraction enhanced
- Require additional growing steps
- May suffer from current leakage

• Better coupling w/ heat sink

• High quality wafer bonding required

State-of-art [Evans, Slivken, Razeghi et al. APL, Aug.2007]

Narrow-ridge buried heterostructure waveguides + Electroplating + Thermally optimized packaging

9.3% wall-plug efficiency at RT at 4.7 μm (!)

Outline

- Review on thermal properties of mid-IR QCLs
 - focus on devices operating in the 3-5 μm window
 - GaInAs/AlInAs
 - GaInAs/AlGaAsSb
- Strategies to improve thermal performance of mid-IR QCLs
 - InAs/InGaAs AlAs/AlInAs smoothed interfaces
 - Improved processing using high-k dielectrics
- Assessment of the electronic and thermal properties of mid-IR QCLs via $\mu\text{-}\text{probe}$ photoluminescence
 - Electron lattice coupling vs conduction band offset
 - Thermal boundary resistance

Experimental approach

- Photoluminescence spectroscopy on the laser front facets
- Exploit
 - μ-probe spatial resolution (diffraction limit)
 - No hot-spots or surface e-h recombination (unipolarity)
- Facet temperatures close to bulk temperature in QCLs

- Photoluminescence analysis
 - local *lattice and electronic temperatures*

Università di Bari

Anisotropic thermal conductivity 2D thermal modeling

[Lops, Spagnolo, Scamarcio, JAP 2006]

GaInAs/AlInAs mid-ir QCLs @ 8.1 µm

5

-10

-5

(mm) Z

Au

SiO₂

AlInAs active

InP

10

5

0

- $T_L > T_H$; Temperature overshoot in the active region $\rightarrow k_{\perp}$
- ΔT across the active \rightarrow different heat fluxes towards AlInAs cladding and InP substrate
- Modeling → k_⊥ = 0.6 W/K m *one order of magnitude smaller than bulk (!?!?!)* k_{//} → bulk

Thermal conductivity extraction $-\nabla \cdot (k\nabla T) = Q$

- 2D-heat transport eq. solved and fitted to the exp data
- Boundary conds.: $T=T_H$; no heat escapes through the sides or top of the laser
- Known conductivities for all bulk-like layers considered
- Temperature influence and doping influence included
- Only fitting parameters: k_{\perp} and $k_{\prime\prime}$ in the active region

Thermal resistivity in heterostructures

weigthed average of bulk resistivities interface thermal resistivity

- If N small \rightarrow interface contribution to R is negligible ٠
- Our experiments in THz and mid-IR QCLs: ٠
 - bulk contribution never accounts for the measured values
 - Interface thermal resistivity dominant
- Comparing experimental R with calculated bulk contributions \rightarrow TBR

Can we improve the thermal conductivity of mid-IR QCLs ?

- Design active regions with reduced TBR
 - material choice
 - reduce interface sharpness
- Improve device fabrication
 - use of high-k dielectrics

Influence of material: the case of InGaAs/AlGaAsSb active regions

[calculations by C. Zhu et al. JAP (2006)]

- K (AlGaAsSb) \cong ¹/₄ K(InGaAs), K(InAlAs) however
- Better matching of phonon properties in InGaAs/AIGaAsSb
 - phonon dispersion; acoustic impedance (mass density x sound velocity); phonon DOS; Debye temperature
- → TBR (InGaAs/AlGaAsSb) < TBR (InGaAs/AlInAs)

Università di Bari

InGaAs/AlGaAsSb QCLs

[Vitiello, Scamarcio, Spagnolo, Yang, Wagner et al. APL, 2007]

- Emission wavelength $\lambda = 4.9 \ \mu m$
- # interfaces = 550
- k_⊥ = 1.8 W/K·m
- Interface contribution to thermal resistivity = 63 %
- TBR = 0.75 x 10⁻⁹ K/W·m²
 - Comparable with GaAs/AlGaAs
 - ~ 5 times better than GalnAs/AllnAs

Università di Bari

Influence of interface structure

[Vitiello, Gresch, Spagnolo, Scamarcio, Faist et al., submitted APL, 2007]

- strained In_{0.61}Ga_{0.39}As/In_{0.45}Al_{0.55}As QCLs
- InAs or AlAs δ-layers (0.2 nm) to increase the conduction band discontinuity in the active layers
- 1ML broadening at IFs included in the design
- Emission wavelength λ = 4.78 μ m
- Peak optical power: 0.55 W @ 323K; T_{MAX}(CW) = 243 K

Università di Bari

Temperature mapping

- k_⊥ = 2.0 W/K·m
- # interfaces = 600 / 1325
- TBR = 0.5 − 1.1 x 10⁻⁹ K/W·m²
 - Comparable with GaAs/AlGaAs

Università di Bari

Mid-ir InGaAs-based and GaAs-based QCLs

QCL active region	λ (μm)	T _H (K)	$\frac{k_{\perp}}{(W/(K \times m))}$	TBR (10 ⁻⁹ K/W×m ²)
InGaAs/AlInAs	8	80	0.6	4.4
InGaAs/InGaAsSb Epilayer down	4.9	60	1.8	0.75
InGaAs/InGaAsSb Epilayer up	4.9	60	1.8	0.75
InGaAs/AlInAs InAs, AlAs δ-layers	4.8	60	2	0.5 – 1.1
GaAs/Al _{0.33} Ga _{0.67} As	9.4	90	5.5	0.48

- Developing new design strategies of QCLs including smoothed interfaces and/or phonon matched materials will pay off
 - TBR reduction
 - improved thermal management

Università di Bari

Electronic properties / wall plug efficiency

[strained $In_{0.61}Ga_{0.39}As/In_{0.45}AI_{0.55}As$ QCLs + InAs, AlAs δ -layers]

Electron-lattice coupling

Heterostructure	λ (µm)	$\Delta E_{\rm C}({\rm eV})$	α (Kcm²/kA)
GaAs/Al _{0.45} Ga _{0.55} As	12.6	0.39	44.7
GaAs/AlAs	11.8	1	29.0
$Ga_{0.47}In_{0.53}As/Al_{0.62}Ga_{0.38}As_{1-x}Sb_{x}$ epilayer-side	4.9	1.2	10.4
$\begin{array}{c} Ga_{0.47}In_{0.53}As/Al_{0.62}Ga_{0.38}As_{1-x}Sb_{x}\\ substrate \ side \end{array}$	4.9	1.2	10.8
InGaAs/AlInAs InAs, AlAs δ-layers	4.8	0.62-0.95	34.3

- Comparable active region mean doping in the range 1.5-4.5 cm⁻³
- The electron-lattice coupling increases with the conduction band offset

Planarization w/dielectrics

- Core structure as in Yu, Razeghi et al., APL (2003), T_H=298 K, P=7W
- Thermal performance comparable with InP-buried devices

Thermal conductivity of Si₃N₄:Y₂O₃

Planarization of QCLs using Y₂O₃:Si₃N₄

[Spagnolo, Lops, Scamarcio, Vitiello, Di Franco, submitted JAP, 2007]

- Improved thermal management
- No lateral current leakage
- Significant reduction in the device thermal resistance

Thermal resistance $R_L = (T_{max} - T_H)/P$

Mounting and processing configuration	Top contact thickness	Insulating material	Planarizing material	R _L (K/W)
"Conventional" Ridge waveguide	0.4 µm	SiO ₂		17.9
"Conventional" Ridge waveguide	0.4 µm	Si ₃ N ₄		16.3
InP-Buried	0.4 µm	Si ₃ N ₄		14.1
Au Electroplated	5 µm	SiO ₂		13.5
Planarization	0.4µm	SiO ₂	SiO ₂	18.4
Planarization	0.4µm	Si ₃ N ₄	Si ₃ N ₄	15.0
Planarization	0.4µm	Si ₃ N ₄	Y ₂ O ₃ : Si ₃ N ₄	13.1
Planarization + Au Electroplated	5 μm	Si ₃ N ₄	Y ₂ O ₃ : Si ₃ N ₄	11.8

- Planarization with suitable dielectrics:
 - Thermal performance comparable with conventional buried or electroplated structures
 - 13% reduction of R_L with respect to reference device [Yu, Razeghi et al. APL 83]

Summary

- Comparison of the electronic and thermal properties of mid-IR QCLs via $\mu\text{-probe PL}$
- Strategies for the improvement of the thermal performance of mid-IR QCLs operating in the 3-5 μm range:
 - Reduction of the thermal boundary resistance
 - InGaAs/AlGaAsSb
 - InGaAs/AlInAs + (AlAs, InAs) δ -layers
 - Planarization using high-k dielectrics
- *running*:
 - -Simultaneous thermal and electrical modeling
 - -Design of QCLs w/improved thermal performance

Università di Bari

