

Temperature-dependent Optical Gain and Loss in Continuous-wave Quantum Cascade Lasers between 8.2-10.3 µm

Zhijun Liu and Claire F. Gmachl Princeton University, Princeton, NJ 08544, USA

Liwei Cheng and Fow-Sen Choa University of Maryland Baltimore County, Baltimore, MD 21250, USA

Rich Leavitt and Fred J. Towner Maxion Technologies Inc., Hyattsville, MD 20782, USA

Xiaojun Wang and Jenyu Fan AdTech Optics, City of Industry, CA 91748, USA

Work supported by DARPA-LPAS, DARPA-EMIL and MIRTHE (NSF-ERC)

ITQW 2007, Ambleside, UK

- Understand QC laser performance
- Improve laser designs
- Limited high-quality gain and loss data

Ridge waveguide

Buried heterostructure

- 1/L method $J_{ih} = \frac{\alpha_W + \alpha_M}{g\Gamma} = \frac{\alpha_W}{g\Gamma} \frac{\ln(R)}{g\Gamma} \frac{1}{L}$
 - Need several reliable devices
- Sensitive to threshold measurements especially at low temperature
- Hakki-Paoli method $g\Gamma J \alpha_W = -\frac{1}{L} \left(\ln \left(\frac{V^{1/2} + 1}{V^{1/2} 1} \right) \ln \left(\frac{1}{R} \right) \right) = y \qquad V = \frac{P_1 + P_2}{2V_i}$
 - Need only one reliable device (short cavity, narrow laser ridge, "clean" spectrum)
 - Preferred in this study

B. W. Hakki, et al., J. Appl. Phys. 46, 1299–1306 (1975)

• Transmission technique and others D. G. Revin, et al., J. Appl. Phys. **95**, 7584-7587 (2004)

Design and performance of "vertical transition" QC lasers (QCV1) at λ ~8.2 µm

Gain and loss of "vertical transition" QC lasers (QCV1) at λ ~8.2 µm

M. A. Ordal, et al., Appl. Opt. 22, 1099-1119 (1983)

- Measured gain agrees well with the design
- Measured waveguide loss is much higher than calculated free carrier absorption

Performance of "vertical transition" QC lasers (QCV3) at λ~10.3 μm

Gain and loss of "vertical transition" QC lasers (QCV3) at λ ~10.3 µm (Ridge waveguide Vs. BH)

Measured waveguide loss is higher than calculated free carrier absorption

Side-wall SiN/Au is not the major loss origin

Intersubband resonant absorption

- Resonant absorption accounts for the difference at room temperature
- Large discrepancy remains in low temperature range

Same waveguide with different active region designs

10.3µm, vertical transition (QCV3)

9.6µm, vertical transition (QCV2)

9.8µm, diagonal transition (QCD1)

► Gain agrees well with design for vertical transition lasers, and but is smaller than modeling for diagonal transition laser.

- ► Higher waveguide loss than calculated free carrier absorption
- Complex temperature-dependence of waveguide loss

Gain and loss for "diagonal transition" QC lasers at λ~9.8 (QCD1) and 10.1 (QCD2) μm

- ► Parasitic optical transitions result in smaller gain.
- Much higher loss and unexpected temperature-dependence means other loss origins other than free carrier absorption (resonant absorption, scattering loss, interface state absorption, etc.)

- Longer wavelength lasers have smaller linewidth
- ► Diagonal transition lasers have larger, but less temperature-sensitive linewidth

Gain coefficient

- Agrees well with modeling for vertical transition lasers
- Smaller than the design for diagonal transition lasers partially due to parasitic carrier leakage

Waveguide loss

- Within range of 12-25cm⁻¹, much higher than free carrier absorption calculation (3-12cm⁻¹)
- Intersubband resonant absorption has shown to be an important factor
- Complicated temperature-dependence (constant, increasing or decreasing) indicates unidentified loss origins in the active core (accidental resonant absorption, interface/defect states, etc.)

Acknowledgments

Thanks to Bryan T. Haslam, Grace Silva, and Jayson J. Paulose for their assistance in early parts of the work.