

Automatically phase-matched quantum coherence contributions as a source for THz radiation

Inès Waldmueller, Weng W. Chow and Michael C. Wanke Sandia National Laboratories

generate THz radiation

Sandia National Laboratories

Overview

III. Capabilities of OPED

(Dependence of Optical Conversion Efficiency on Pulse Duration and Temperature)

II. Benefits of Pump Recovery

IV. Dependence of Small Signal Gain on Pump Intensity

Overview

III. Capabilities of OPED

(Dependence of Optical Conversion Efficiency on Pulse Duration and Temperature)

II. Benefits of Pump Recovery

IV. Dependence of Small Signal Gain on Pump Intensity

Motivation: Direct ("conventional") THz-QCL

direct ("conventional") THz-QCL

for room temperature (and higher)

hard to achieve/maintain population inversion

Motivation: Direct ("conventional") THz-QCL

direct ("conventional") THz-QCL

for room temperature (and higher)

hard to achieve/maintain population inversion

efficiency decreases with increasing temperature

different approach
better suited
for high temperature
operation?

generate THz radiation

Theory: Maxwell's Equations + SBE

Maxwell's wave equations for total field:

$$\frac{\partial E}{\partial t} = -\frac{1}{\epsilon} \nabla \times H - \frac{1}{\epsilon} \frac{\partial P}{\partial t}, \frac{\partial H}{\partial t} = -\frac{1}{\mu} \nabla \times E \qquad \qquad E, H$$

$$P = \sum_{ij} d_{ij} P_{ij}$$

SBE for polarizations P and subband populations N:

$$\frac{d}{dt}P_{ab} = \left(\frac{i}{\hbar}\epsilon_{ab} - \gamma\right)P_{ab} + \frac{i}{\hbar}d_{ab}(N_a - N_b)E + \frac{i}{\hbar}\sum_{c \neq a,b}(d_{bc}P_{ac} - d_{ac}P_{cb})E$$

$$\frac{d}{dt}N_a = \frac{i}{2\hbar}\sum_{c \neq a}d_{ac}(P_{ca} - P_{ac})E + \frac{d}{dt}N_a|_s$$

Overview

III. Capabilities of OPED

(Dependence of Optical Conversion Efficiency on Pulse Duration and Temperature)

II. Benefits of Pump Recovery

IV. Dependence of Small Signal Gain on Pump Intensity

Benefits of Pump Recovery

Coherent Pump Recovery !!!

excite structure with Gaussian pulse (propagating in x-direction)

Benefits of Pump Recovery

Coherent Pump Recovery !!!

4-5 x more THz radiation

Overview

II. Benefits of Pump Recovery

IV. Dependence of Small Signal Gain on Pump Intensity

Peak Pump Intensity I_{PP} [MW/cm²]

Optical Conversion Efficiency (max. Output/Input)

Dependence of optical conversion efficiency η on pump energy

for (a) excitation with 3 ps pulse for (b) excitation with 30 ps pulse for (c) cw excitation

- strong dependence on excitation length and intensity
- saturation of THz gain
 (optical Stark effect and pumpinduced population redistribution)

window for optimal pump excitation

Optical Conversion Efficiency

Dependence of optical conversion efficiency η on pump energy

for cw excitation at different temperatures

strong temp. dependence due to temp. dependent non-radiative carrier recombination and polarization dephasing

highest achievable η and width of the window for optimal pump excitation are temperature dependent

cw-excitation: pathway to room-temp operation

Promising Results for Pulse- and CW-Excitation:

good recovery of pump energy

0.2 0.3 0.4 (Propagation Distance [mm]

promising conversion efficies for different lattice temperatures

Promising Results for Pulse- and CW-Excitation:

good recovery of pump energy

promising conversion efficies for different lattice temperatures

Overview

pathway to RT-operation

2 Peak Pum I_{PP} [MW/cm²]

II. Benefits of Pump Recovery with pump recovery without pump recovery coherent pump recovery 4-5 x more THz radiation

 excite OPED with pump field (redistribute carriers between subbands)

-probe with small THz field with different detunings

SIGN OF QUANTUM COHERENCE!!!

SIGN OF QUANTUM COHERENCE!!!

Quantum Coherence Contributions

Quantum coherence contributions are usually observed in atomic model system, such as ... e.g. lambda and ladder systems

Lambda + **Ladder** = **OPED**

model systems for quantum coherence effects (LWI, EIT) should see signs of q. c. in gain spectra

Analytical Results:

possible to generate THz radiation with/without population inversion due to:

- stimulated emission
- quantum coherence contributions

linear stimulated emission

automatically phase-matched quantum coherence effects

auto-correlation

cross-correlation

$$\frac{d}{dt}E_{THz} \propto d_{THz}^2 E_{THz} \frac{(N_2 - N_3)4\hbar^2\gamma^2 + (N_2 - N_3)d_{THz}^2 |E_{THz}|^2 + (N_1 + N_2 - N_3 - N_4)d_D^2 |E_D|^2}{2\hbar\gamma(4d_D^2|E_D|^2 + d_{THz}^2|E_{THz}|^2 + 4\hbar^2\gamma^2)}$$

$$\alpha_{THz} = \alpha_{WG} + \alpha_M + \alpha_{FCL}$$
$$\ge 60cm^{-1}$$

SIGN OF QUANTUM COHERENCE!!!

Summary: more information in PRL (Sept. 2007)

II. Benefits of Pump Recovery with pump recovery without pump recovery to be supposed to be s

