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Who needs population inversion?

Gain
(without inversion)
Automatically phase-matched
guantum coherence contributions
as a source for THz radiation

Intensity Gain [1/cm]
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Opt. pumped, electrically driven QCL (OPED)
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Overview

lll. Capabilities of OPED

|. OPED-scheme (Dependence of Optical Conversion Efficiency
on Pulse Duration and Temperature)
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lll. Capabilities of OPED
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V. Dependence of Small Signal Gain
on Pump Intensity
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direct (“conventional”) THz-QCL
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Motivation: Direct (“conventional®) THz-QCL
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direct (“ conventional”) THz-QCL
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Motivation: Direct (“conventional®) THz-QCL
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7 ‘ Opt. pumped, electrically driven QCL (OPED)
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ﬂ Opt. pumped, electrically driven QCL (OPED)

— B laser subbands
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Opt. pumped, electrically driven QCL (OPED)
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Opt. pumped, electrically driven QCL (OPED)
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Theory: Maxwell’s Equations + SBE

Maxwell’'s wave equations for total field:
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Overview

lll. Capabilities of OPED
|. OPED-scheme (Dependence of Optical Conversion Efficiency
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g Benefits of Pump Recovery

Coherent Pump Recovery !!!

excite structure with Gaussian pulse (propagating in X-direction)
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Benefits of Pump Recovery

— With pump recovery
— without pump recovery
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lll. Capabilities of OPED

(Dependence of Optical Conversion Efficiency
on Pulse Duration and Temperature)
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Optical Conversion Efficiency (max. Output/l nput)

Dependence of optical conversion efficiency 77 on pump energy

for (a) excitation with 3 ps pulse
for (b) excitation with 30 ps pulse
for (c) cw excitation
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- strong dependence on
excitation length and intensity

- saturation of THz gain
(optical Stark effect and pump-
Induced population redistribution)
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Optical Conversion Efficiency

Dependence of optical conversion efficiency 7] on pump energy

for cw excitation
at different temperatures

strong temp. dependence due to
temp. dependent non-radiative
carrier recombination and
polarization dephasing

highest achievable 7) and
width of the window

for optimal pump excitation

are temperature dependent

total losses for simulations:

cw-excitation: armg, = 140em™ !, aprp = 50cm™*
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K‘ Promising Resultsfor Pulse- and CW-EXxcitation:
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K‘ Promising Resultsfor Pulse- and CW-EXxcitation:
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This means that our approach works -
- theoretically -
like we thought it would!
Or does it?
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It workslike wethought it would! Or doesit?

external pump
excites electronsto
upper laser subband

laser subbands

external pump
depletes electrons
from lower laser
subband

control population of laser subbands with external pump field
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Let’slook at thelinear gain for different pump intensities

- excite OPED with pump field
(redistribute carriers between subbands)
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-probe with small THz field with different detunings
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Let’slook at thelinear gain for different drive intensities
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(electromagentically induced transparency)

Intensity Gain [1/cm]

oo —_—

@)}

SIGN OF QUANTUM COHERENCE!!!

Subband Ogcupation

\]

(=)

02 03 04 05
Pump Intensity [MW/cm?]



Let’slook at thelinear gain for different drive intensities
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Quantum Coherence Contributions

Quantum coherence contributions are usually observed in atomic model system,
such as ... e.g. lambda and ladder systems
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L ambda + Ladder = OPED

model systems for quantum coherence effects
(LWI, EIT)

should see signs of g. c. in gain spectra rED Sandia
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Analytical Results:

possible to generate THz radiation
with/without population inversion due to:
- stimulated emission

- guantum coherence contributions

linear stimulated emission

(N2 — N3)4h?y* + (N2 — N3)dg g, | Eraz|* + (N1 + N2 — N3 — Na)dp | Ep |
2hy(4d% |Ep|? + d%4, | BT, |2 + 4R242)

s Sandia
ED National
. Laboratories




Let’slook at thelinear gain for different drive intensities
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