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Actual frequency coverage

Map of THz QCL’s (without magnetic field)

 Motivation for low frequency
THz QCL: Imaging, earth-
based local oscillators

 S. Kumar et al., ITQW 2007 1.4 THz without B-field
 G. Scalari et al., ITQW 2007 0.83 THz in B-field
 A. Wade et al., ITQW 2007 < 1 THz in B-field



Challenges for QCL below 2 THz

 Photon energy < 8 meV
 Broadening of quantum states 1-2 meV
 Free carrier absorption scales with λ2

 Low loss waveguides
 Sufficient population inversion
 Selective injection of carriers

Facts:

Challenge is to get:
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L = 129 nm
Oscillator strength = 19

Bandstructure

Bound to continuum transition with energy gap
Rescaling of LO-phonon extraction design

 Good injection efficiency
 Low intersubband absorption



Calculated intersubband absorption

 Low intersubband absorption at photon energy (7 meV)

Using a thermal equilibrium model for electron distribution



Double-metal waveguide : loss calculation



Waveguide losses: Bulk model
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Bulk model :

For λ > 150 µm, the waveguide losses increase with λ2.

This model predicts to high losses for lasing at long
wavelength. But is the model adequate?



W’guide losses: ISB Model
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ISB absorption depends on the specific Bandstructure.

Bound-to-continuum design with energy gap allows to get
waveguide losses below 20 cm-1 for n=2E15cm-3.

< 10 cm -1 ~ 10 cm -1 (B2C)



Structure N891 (150-170um)

cw spectra at 10 K
pulsed mode

 Peak power at 10K: 1.2 mW
 Pulsed mode operation up to

98 K for this sample

 Strong Stark-shift with
increasing voltage

Overview:
2.0 THz 1.8 THz 1.6 THz 1.4 THz 1.2 THz



Structure N899 (170-190um)

cw spectra at 10 Kpulsed mode

 Pulsed mode operation up to
90 K for this sample

 Strong Stark-shift with
increasing voltage

Overview:
2.0 THz 1.8 THz 1.6 THz 1.4 THz 1.2 THz



Structure N892 (200-220 um)

 Tmax in cw: 58K (pulsed 84K)
 Max optical power at 10K: 0.35 mW

Overview:
2.0 THz 1.8 THz 1.6 THz 1.4 THz 1.2 THz

 Strong Stark shift of gain curve,
16% of center frequency

 Lasing on Fabry-Pérot modes of
the cavity (1mm x 165µm)

In press  Appl. Phys. Lett.

cw



Structure N908 (230 – 250 um)

 Tmax in cw: 50K (pulsed 69K)
 Max optical power at 10 K : 117µW

Overview:
2.0 THz 1.8 THz 1.6 THz 1.4 THz 1.2 THz

 Stark-shift of gain curve (10% of
center frequency)

 Lasing on Fabry-Pérot modes of
the cavity (1mm x 165µm)

In press  Appl. Phys. Lett.

cw



Selective injection (N891, 160um)
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Dynamic range:

finetuning

The dynamic range is determined by the coupling between
injector states and upper state. Very sensible!



Going from 1.34 to 1.2 THz

  N892  N908 (1.34  1.2 THz)
  Increasing well width (1. and 2.)
  Lower upper state energy

+5% (8 Å)+1% (2 Å)

2.0 THz 1.8 THz 1.6 THz 1.4 THz 1.2 THz

Bandstructure
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Comparison N892 and N908

 Lower emission frequency
 Same threshold current density
 Dynamic range decreases from 32% to 15%
 Lower coupling:

ΔEN892=0.63 meV  ΔEN908=0.54 meV
 Lower Tmax
 Importance of Injector design

N892

N908

2.0 THz 1.8 THz 1.6 THz 1.4 THz 1.2 THz



Temperature limits ?

 Same activation with Temperature
 Independent on the photon energy

Lasers between 160 µm and 250 µm

Different threshold current densities

69 K84 K97 K100 KTmax

N908
~240µm

N892
~210µm

N899
~190µm

N891
~160µm

 A limit at ~ 100 K for this class of lasers

 Dynamic range determines whether laser stops before 100 K

Comparison suggests:



Conclusion

 QCL’s covering the range from 2.1 to 1.2 THz
 Injector design is crucial for maximizing dynamic

range
 Maximal operation temperature seems to be

limited at ~ 100K. Injector has to be optimized to
achieve ~ 100K.



Thank you for your attention!


