

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Long Wavelength THz QCL, emitting down to 1.2 THz

<u>C. Walther</u>, M. Fischer, G. Scalari, M.I. Amanti, R. Terazzi, J. Faist

ETH Zürich, Institut for Quantum Electronics, Zürich, Switzerland

Financial support:

Swiss National Science Foundation (NCCR-Quantum Photonics)

EU project « Teranova »

ITQW 2007

Outline

- Challenges for low frequency THz QCL
- Bandstructure and waveguide design
- Results on low frequency THz QCL
- Transport and selective injection
- Temperature limits
- Conclusions

Actual frequency coverage

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Atmospheric Transmission

Absorption due to water vapor

 Motivation for low frequency THz QCL: Imaging, earthbased local oscillators

- S. Kumar et al., ITQW 2007
- G. Scalari et al., ITQW 2007
- A. Wade et al., ITQW 2007

1.4 THz without B-field

- 0.83 THz in B-field
- < 1 THz in B-field

Challenges for QCL below 2 THz

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Facts:

- Photon energy < 8 meV</p>
- Broadening of quantum states 1-2 meV
- Free carrier absorption scales with λ^2

Challenge is to get:

- Low loss waveguides
- Sufficient population inversion
- Selective injection of carriers

Bandstructure

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Bound to continuum transition with energy gap Rescaling of LO-phonon extraction design

- Good injection efficiency
- Low intersubband absorption

C. Walther *et al*., Appl. Phys. Lett., **89**, 231121 (2006) G. Scalari *et al*., Appl. Phys. Lett., **86**, 181101 (2005)

Calculated intersubband absorption

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Using a thermal equilibrium model for electron distribution

Low intersubband absorption at photon energy (7 meV)

Double-metal waveguide : loss calculation

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Waveguide losses: Bulk model

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

For $\lambda > 150 \ \mu$ m, the waveguide losses increase with λ^2 .

This model predicts to high losses for lasing at long wavelength. But is the model adequate?

W'guide losses: ISB Model

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ISB absorption depends on the specific Bandstructure.

Bound-to-continuum design with energy gap allows to get waveguide losses below 20 cm⁻¹ for n=2E15cm⁻³.

- Peak power at 10K: 1.2 mW
- Pulsed mode operation up to 98 K for this sample
- Strong Stark-shift with increasing voltage

Structure N899 (170-190um)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

 Pulsed mode operation up to 90 K for this sample Strong Stark-shift with increasing voltage

Structure N892 (200-220 um)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- T_{max} in cw: 58K (pulsed 84K)
- Max optical power at 10K: 0.35 mW

In press Appl. Phys. Lett.

Lasing on Fabry-Pérot modes of the cavity (1mm x 165µm)

Max optical power at 10 K : 117µW

 Lasing on Fabry-Pérot modes of the cavity (1mm x 165µm)

In press Appl. Phys. Lett.

Selective injection (N891, 160um) Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

The dynamic range is determined by the coupling between injector states and upper state. Very sensible!

Temperature limits ?

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Lasers between 160 μm and 250 μm

Different threshold current densities

Comparison suggests:

- A limit at ~ 100 K for this class of lasers
- Dynamic range determines whether laser stops before 100 K

Conclusion

- QCL's covering the range from 2.1 to 1.2 THz
- Injector design is crucial for maximizing dynamic range
- Maximal operation temperature seems to be limited at ~ 100K. Injector has to be optimized to achieve ~ 100K.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Thank you for your attention!