Terahertz Sources Based on Intra-Cavity Difference-Frequency Generation in Quantum Cascade Lasers

<u>Mikhail A. Belkin¹</u>, Federico Capasso¹, Feng Xie², Alexey Belyanin², Deborah L. Sivco³ Milan Fischer⁴, Jérôme Faist⁴, Douglas C. Oakley⁵, Christopher J. Vineis⁵, George W. Turner⁵

- 1. Harvard School of Engineering and Applied Sciences
- 2. Physics Department, Texas A&M University
- 3. Bell Laboratories
- 4. ETH, Zurich
- 5. MIT Lincoln Laboratory

ITQW, 2007

Motivation

Compact THz source

- Injection pumped
- CW at TE cooler temperature
- Widely tunable
- ~10-1000 μW of CW THz power

Applications

- Spectroscopy
- Local oscillator for THz heterodyning
- Remote sensing, screening, inspection

THz QCL

B.S. Williams, Nature Photon 1, 517-525 (2007)

Mid-IR QCL

Excellent performance in mid-infrared

THz Difference Frequency Generation

Difference-frequency generation (DFG) occurs in a medium with second-order nonlinear susceptibility $\chi^{(2)}$

THz QCL source using intra-cavity DFG

- Dual-frequency mid-infrared QCLs with monolithically integrated $\chi^{(2)}$.
- THz radiation is generated via intra-cavity DFG.

• Widely tunable THz source at RT (using DFB gratings for both pump lasers).

Challenges for intra-cavity THz DFG

$$I(\omega_{THz}) \propto |\chi^{(2)}|^2 I(\omega_1) I(\omega_2) \times l_{eff}^2$$

Traditional schemes for THz DFG:

Use high-intensity pumps from pulsed solid-state lasers (up to 1GW/cm²)

and/or

Utilize long l_{eff} (tens of mm) in transparent nonlinear crystals

Intra-cavity THz DFG in dual-wavelength mid-IR QCL:

- Relatively low pump intensities (up to 1-10MW/cm²)
- l_{eff} is limited by free-carrier absorption to 20.2 mm
- Quantum well structures may have *giant* $\chi^{(2)}$ (up to 10⁶ pm/V)

$\chi^{(2)}$ with population inversion

$$\chi^{(2)}(\omega = \omega_1 - \omega_2) \sim \sum_{n,n'} \frac{z_{1n} z_{nn'} z_{n'1}}{(\omega - \omega_{nn'} + i\Gamma_{nn'})} \left(\frac{1}{(\omega_1 + \omega_{n'1} + i\Gamma_{n'1})} + \frac{1}{(-\omega_2 - \omega_{n1} + i\Gamma_{n1})} \right)$$

Quantum cascade laser structure with giant $\chi^{(2)}$.

- Giant $\chi(2)$ with population inversion
- Laser action instead of absorption

Active region design

$\chi^{(2)}$ -section design

$\chi^{(2)}$ -section design

Section with ω_1 :

Section with $\boldsymbol{\omega}_1$:

1. Two-phonon design at 155meV $(\lambda \approx 8 \mu m)$

[Nature Photonics 1, 288 (2007)]

Section with ω_1 :

1. Two-phonon design at 155meV $(\lambda \approx 8 \mu m)$

[Nature Photonics 1, 288 (2007)]

2. Two-phonon design at 125meV $(\lambda{\approx}10\mu m)$

- Section with ω_1 :
- 1. Two-phonon design at 155meV $(\lambda \approx 8 \mu m)$

[Nature Photonics 1, 288 (2007)]

2. Two-phonon design at 125meV $(\lambda \approx 10 \mu m)$

Waveguide design

Device performance: mid-IR

TAS

Device performance: mid-IR

TAS

Product of the pump powers

Terahertz emission 80K

Terahertz emission 80K

Terahertz emission different T

• Peak positions agree with mid-IR data

TAS

• Red-shift with temperature can also be observed in mid-IR data

• THz DFG signal observed up to 250K

Terahertz emission

 Peak positions agree with mid-IR data TAS

 Red-shift with temperature can also be observed in mid-IR data

• THz DFG signal observed up to 250K

THz power/conversion efficiency

TAS

THz power/conversion efficiency

TAS

THz power/conversion efficiency

TAS

Conversion efficiency: analysis

 S_{eff} , I_{eff} , refractive indices are known from waveguide calculations:

 $n_{eff} \approx 3$, $I_{eff} \approx 90 \ \mu m$, $S_{eff} \approx 1800 \ \mu m^2$

Estimate $\chi^{(2)}$ using electron density in upper laser state from gain=loss condition: $\chi^{(2)}\approx 4x10^4\, pm/V$

Uncertain parameters:

Mid-IR lasing in higher order lateral modes

THz wave out-coupling efficiency from QCL waveguide (~10%?)

Conversion efficiency: analysis

 S_{eff} , I_{eff} , refractive indices are known from waveguide calculations:

 $n_{eff} \approx 3$, $I_{eff} \approx 90 \ \mu m$, $S_{eff} \approx 1800 \ \mu m^2$

Estimate $\chi^{(2)}$ using electron density in upper laser state from gain=loss condition: $\chi^{(2)}\approx 4x10^4\, pm/V$

Uncertain parameters:

Mid-IR lasing in higher order lateral modes

THz wave out-coupling efficiency from QCL waveguide (~10%?)

Theoretical efficiency: $W_{THz}/(W_1 \times W_2) \sim 10 \ \mu W/W^2$ Experiment (corrected for the collection efficiency): ~ 1 $\mu W/W^2$

Future work

Attempt phase matching by varying waveguide width

• Improve edge emission out-coupling

Surface emission scheme

Novel active region designs

Summary

 Improved temperature performance and power of THz DFG in QCLs

- THz signal level is >1 μ W at 80K and still ~200nW at 250K
- Conversion efficiency is ~1 μ W/W².
- Large room for conversion efficiency improvements

Funding: AFOSR

The structures were processed in the Center for Nanoscale Science (CNS) in Harvard University.

Surface emission scheme

- Typical *l_{eff}~100µm*; QCL length ~3mm
- Laser ridge height and width are smaller than THz wavelength ⇒ poor THz out-coupling

Surface emission

- Allows THz extraction along the whole device.
- Good THz beam quality.
- Out-coupling up to 30 cm⁻¹

