Short wavelength intersubband emission from GaN/AIN quantum wells

Laurent Nevou, F. H. Julien, M. Tchernycheva,

OptoGaN Dept., Institut d'Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud XI, Orsay, France and F. Guillot, E. Monroy

CEA-Grenoble, DRFMC/SP2M/PSC, Grenoble, France

Outline

- Motivations for III-nitride based ISB devices
- Short-wavelength ISB emission from GaN/AIN QWs
 - Resonant second harmonic generation in GaN/AIN QWs
 - \bigcirc ISB emission at 2.1-2.3 μ m from GaN/AIN QWs
- Towards Quantum Fountain Lasers
- Conclusions and prospects

Properties of nitride heterostructures

- Large conduction band offset :
 1.75eV for GaN/AIN
- Direct gaps
- Remote lateral valleys (>2eV)
- Huge internal field (3-10 MV/cm)

Electron effective mass
(0.2m₀ = 3 times that of GaAs)

Nitride unipolar devices

Ultrafast ISB all-optical gates Absorption recovery time 150-400 fs @ 1.5 µm

N. lizuka et al., JAP 99, 093107 (2006); Optics Express 2006

Fast quantum well

photodetector (QWIPs)

Giorgetta et al., Elec. Lett., 43, 3 (2007)

Multi-GHz electro-optical modulators based on coupled quantum wells

L. Nevou et al., APL 90, 223511 (2007)

No emitting devices have been demonstrated up to recently!

Emission at 1µm through resonant secondharmonic generation

- Generation of radiation at 1 µm wavelength
- Large double-resonance enhancement

Nevou et al., Appl. Phys. Lett. 89, 151101 (2006).

Intersubband luminescence

- Observation of ISB luminescence is a challenging task because the ISB luminescence efficiency is very small
 - Radiative time in the nanosecond range (~20-30 ns)
 - Non-radiative time in the 0.1-0.4 picosecond range

Samples for ISB luminescence

GaN/AIN SL 2.1 nm GaN/3 nm AIN PAMBE 1 µm AIN MOCVD

c-sapphire substrate

E900	E1000
250 periods	200 periods
no Si doping	Si doping 5x10 ¹⁹ cm ⁻³

Plasma-assisted MBE: E. Monroy et al. CEA-Grenoble

L. Nevou et al., Electron. Lett. 42, 1308 (2006); APL 90, 121106 (2007)

ISB spectroscopy

E900	E1000
250 periods	200 periods
no Si doping	Si doping 5x10 ¹⁹ cm ⁻³

L. Nevou et al., Electron. Lett. 42, 1308 (2006); APL 90, 121106 (2007)

L. Nevou et al., Electron. Lett. 42, 1308 (2006); APL 90, 121106 (2007)

ISB luminescence excitation spectroscopy

- ISB luminescence excitation spectrum at 300 K obtained by tuning the Ti:Sapphire laser wavelength
- The ISB emission follows the e1e3 pump absorption for p-polarized excitation
- External efficiency 10
 pW/Watt of pump power
- Internal quantum efficiency
 0.3 μW/Watt of pump power

L. Nevou et al., APL 90, 121106 (2007)

Is population inversion achievable?

Condition for population inversion : $\tau_{21} < \tau_{32}$

Towards 1.5 µm ISB lasers

- Quantum Fountain scheme:
 Coupled quantum wells provide room for population inversion and adjustment of pump/laser wavelength
- Pump @ 1.3 μm
 Emission @ 1.5 μm
- Stimulated gain 50 cm⁻¹
 achievable (OPO pump laser)

Evidence of strong electronic coupling

Generation of e1e2 absorption is a signature of strongly coupled wells.

Solution The coupling vanishes for >4 ML thick AIN barriers.

 $\ensuremath{\wp}$ Excellent agreement with simulations assuming a potential drop at the interfaces spread over 1 ML

M. Tchernycheva et al., APL 88, 153113 (2006)

Loss measurements on nitride waveguides

 Loss measurements on nitride waveguides @ 1.5 μm : 4 cm⁻¹ for TM polarization << estimated gain

> A. Lupu et al. (to appear in IEEE Phot. Techn. Lett. 2007)

Conclusion:

- \cdot Resonant enhancement of SHG in GaN/AIN at $1\mu{\rm m}$
- Demonstration of room temperature ISB emission at record short wavelength of 2.1 μ m
- Towards QFL at 1.5µm:
 - Coupled QWs provide gain = 50 cm⁻¹
 - Propagation losses in waveguide = 4 cm⁻¹

