Short wavelength intersubband emission from GaN/AlN quantum wells

Laurent Nevou, F. H. Julien, M. Tchernycheva,
OptoGaN Dept., Institut d’Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud XI, Orsay, France
and
F. Guillot, E. Monroy
CEA-Grenoble, DRFMC/SP2M/PSC, Grenoble, France
Outline

Motivations for III-nitride based ISB devices

Short-wavelength ISB emission from GaN/AlN QWs
 - Resonant second harmonic generation in GaN/AlN QWs
 - ISB emission at 2.1-2.3 µm from GaN/AlN QWs

Towards Quantum Fountain Lasers

Conclusions and prospects
Properties of nitride heterostructures

- Large conduction band offset: 1.75eV for GaN/AlN
- Direct gaps
- Remote lateral valleys (>2eV)
- Huge internal field (3-10 MV/cm)
- Electron effective mass
 \(0.2m_0 = 3 \text{ times that of GaAs} \)
Nitride unipolar devices

Ultrafast ISB all-optical gates
Absorption recovery time 150-400 fs @ 1.5 µm

N. Iizuka et al., JAP 99, 093107 (2006); Optics Express 2006

Fast quantum well photodetector (QWIPs)

Multi-GHz electro-optical modulators based on coupled quantum wells

L. Nevou et al., APL 90, 223511 (2007)

No emitting devices have been demonstrated up to recently!
Emission at 1μm through resonant second-harmonic generation

200 GaN/AlN QWs
2.6 nm well thickness

- Generation of radiation at 1 μm wavelength
- Large double-resonance enhancement

Observation of ISB luminescence is a challenging task because the ISB luminescence efficiency is very small.

- Radiative time in the nanosecond range (~20-30 ns)
- Non-radiative time in the 0.1-0.4 picosecond range
Samples for ISB luminescence

Plasma-assisted MBE:
E. Monroy et al. CEA-Grenoble

<table>
<thead>
<tr>
<th>E900</th>
<th>E1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 periods</td>
<td>200 periods</td>
</tr>
<tr>
<td>no Si doping</td>
<td>Si doping</td>
</tr>
<tr>
<td></td>
<td>5×10^{19} cm$^{-3}$</td>
</tr>
</tbody>
</table>
ISB spectroscopy

<table>
<thead>
<tr>
<th>E900</th>
<th>E1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 periods</td>
<td>200 periods</td>
</tr>
<tr>
<td>no Si doping</td>
<td>Si doping 5x10^{19} cm^{-3}</td>
</tr>
</tbody>
</table>

T = 300 K

\(e_1-e_2 \) absorption (Brewster's angle) \(e_1-e_3 \) absorption (multipass waveguide)

ISB luminescence

T = 300 K

E900

E1000

p-polarized excitation @ 0.98 µm in resonance with e_1e_3 ISB absorption

Emission strongly p-polarized

Record short emission wavelength 2.13 µm

300 K!

ISB luminescence excitation spectroscopy

- ISB luminescence excitation spectrum at 300 K obtained by tuning the Ti:Sapphire laser wavelength
- The ISB emission follows the e_1e_3 pump absorption for p-polarized excitation
- External efficiency 10 pW/Watt of pump power
- Internal quantum efficiency 0.3 μW/Watt of pump power

$L.\,\text{Nevou et al., APL 90, 121106 (2007)}$
Is population inversion achievable?

Condition for population inversion: $\tau_{21} < \tau_{32}$
Towards 1.5 µm ISB lasers

Quantum Fountain scheme: Coupled quantum wells provide room for population inversion and adjustment of pump/laser wavelength.

- Pump @ 1.3 µm
- Emission @ 1.5 µm

Stimulated gain 50 cm\(^{-1}\) achievable (OPO pump laser)
Evidence of strong electronic coupling

Observation of e_1e_2 absorption is a signature of strongly coupled wells.

The coupling vanishes for >4 ML thick AlN barriers.

Excellent agreement with simulations assuming a potential drop at the interfaces spread over 1 ML

M. Tchernycheva et al., APL 88, 153113 (2006)
Loss measurements on nitride waveguides

Loss measurements on nitride waveguides @ 1.5 µm: 4 cm⁻¹ for TM polarization << estimated gain

A. Lupu et al.
Conclusion:

• Resonant enhancement of SHG in GaN/AlN at 1µm
• Demonstration of room temperature ISB emission at record short wavelength of 2.1µm
• Towards QFL at 1.5µm:
 • Coupled QWs provide gain = 50 cm\(^{-1}\)
 • Propagation losses in waveguide = 4 cm\(^{-1}\)

This work was supported by European FP6 NitWave program (contract IST #04170)