### Growth by MOVPE of AlGaN/GaN structures with intersubband transitions in the 1.2-1.7µm region of the spectrum

M.P. Halsall

School of Electrical and Electronic Engineering, University of Manchester

P.J. Parbrook and T. Wang EPSRC National Centre for III-V Technologies, Department of Electronic and Electrical Engineering, University of Sheffield

### Outline

Motivation Design Growth Electron microscopy Absorption Conclusions



## Motivation

- C.B. Offsets in AlN/GaN system 1.8eV
- THz modulation rates at Telecom wavelengths possible
  - But:- no device yet despite 10 years of research
- Difficult material system –highly strained, piezoelectric fields and high dislocation densities
   MBE used for previous studies



# Why MOVPE?

#### Against:-

High growth temperatures
 Widely divergent optimum growth conditions
 GaN Tg<700°C AlN Tg>1000°C
 For:-

Rapid improvements in Technology due to mass production of Blue LEDs and Lasers

Cheap technology for mass produced devices

# Minimizing Al in Barrier

V. D. Jovanovic, Z. Ikonic, D. Indjin, P. Harrison, V. Milanovic, and R. A. Soref J. Appl. Phys. 93, 3194 (2003)

MANCHESTER



Assume barrier thickness 1nm
 Plot E<sub>1</sub>-E<sub>2</sub> energy counters as function of barrier Aluminium fraction and well width



 Optimal growth conditions for AlN and GaN divergent, therefore Al<sub>0.7</sub>Ga<sub>0.3</sub>N chosen for barrier material as compromise

Two designs grown with differing doping levels

MANCHESTER

Aim to achieve  $E_1$ - $E_2$  transitions at 1.5µm and  $E_1$ - $E_3$  at 1.3µm

| Sample number | GaN well (nm) | Al <sub>0.7</sub> Ga <sub>0.3</sub> N<br>barrier (nm) | Repeats | Doping level electrons/cm <sup>3</sup> |
|---------------|---------------|-------------------------------------------------------|---------|----------------------------------------|
| 1             | 1.2           | 1.0                                                   | 300     | $1 x 10^{17}$                          |
| 2             | 1.6           | 1.0                                                   | 300     | 1x10 <sup>17</sup>                     |
| 3             | 1.2           | 1.0                                                   | 300     | 3x10 <sup>17</sup>                     |



# **Potential profiles**





## Growth

- Growth by standard shower head MOVPE reactor on sapphire
   High temp AlN grown on Sapphire first
   Al<sub>0.3</sub>Ga<sub>0.7</sub>N 10nm strain balancing interlayer
   Compressive strain at base of superlattice
  - relaxed by interlayer
- X-ray used to confirm structure



# Electron microscopy

### Top of superlattice





# AlN buffer Region





# Absorption



## But-longer range absorption



 $\lambda$  ( $\mu$ m)

Peak Shifts with period and has right polarisation for ISBT
Energy corresponds to calculate HH<sub>1</sub> – HH<sub>3</sub> transition energy

# Comparison to published data



MANCHESTER 1824



Lizuka et al 2002 Heavily doped AlN/GaN structure on AlN buffer

# Sample structure and strain



Previous reports of absorption features due to hole gases in AlGaN grown on AlN e.g. M. S. Shur, A. D. Bykhovski, and R. Gaska, Solid-State Electronics **44**, 205-210 (2000).

MANCHESTER

### Absorption due to holes

- Strain induced hole gas must be present at base of superlattice stack
- $\square$  Only HH<sub>1</sub>,HH<sub>2</sub> and HH<sub>3</sub>transitions in well
- HH<sub>1</sub>-HH<sub>2</sub> not observed due to absorption of by Sapphire substrate
- For device control of strain and removal of pregion essential

# Effect of doping Density



MANCHESTER

•broadening due to inhomogeneous process

•probably related to fermi-level variation

λ (μm)



# Conclusions

- MOVPE can produce AlGaN/GaN intersubband structures with transitions in the telecoms region of the spectrum.
- The use of MOVPE with AlN on sapphire technology gives superior sample quality and lower linewidths compared to current MBE samples
- Presence of hole gas at sample base indicated by hole ISBTs in absorption



# Acknowledgements

- EPSRC and Royal Academy of Engineering for support
- Prof M. Sherwin Institute for Quantum and Complex Dynamics, University of California, Santa Barbara for Absorption measurments