Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Quantum Cascade Micro-Lasers with Two-dimensional Photonic Crystal Reflectors

J. Heinrich, R. Langhans, J. Seufert, S. Höfling, A. Forchel *Technische Physik, Universität Würzburg, Germany*

- Introduction
- Design and Fabrication
- Results and Discussion
- Summary

Introduction

Single-mode: reduction of resonator length \rightarrow increased mode spacing

 \rightarrow increased mirror losses

 \rightarrow Highly reflective mirrors required

2D PhCs: Colombelli et al., Science 302, pp. 1374, 2003

Dunbar et al., Opt. Exp. 13, no. 13, pp. 8960, 2005

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Quantum Cascade Laser (QCL)

Bound-to-continuum GaAs/Al_{0.45}Ga_{0.55}As active region design

Pflügl et al. Appl. Phys. Lett. 83(23) (2003)

- Resonant tunneling between lowest injector state and upper laser level 2
- Fast depopulation of lower laser level 1 by interminiband scattering processes

Trigonal PhC lattice with high index pillars used as reflector

Lattice constant a = $3.5 \,\mu m$

Pillar diameter d = 1.7 μ m

→ Photonic band gap at the emission wavelength (~11 µm)

PhC Layout

Reflectivity Calculations

FDTD simulations for 1.5 period (3 column rows)

- \rightarrow Broad stop band
- → Diffraction losses limit max. reflectivity
- \rightarrow > 80 % reflectivity (3D)

Device Fabrication

(1) Definition of contact pad (optical lithography + lift-off) (2) RWG and PhC mirror definition (e-beam lithography + lift-off) (3) Pattern transfer (dry etching by ECR-RIE) \rightarrow Fabrication in single etch step

PhC Devices

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Threshold Characterisitics

Spectral Characteristics

Mode spacing:

•2.47 cm⁻¹ (600 μm PhC)
•1.50 cm⁻¹ (1 mm Ref.)

 $\rightarrow n_{\rm eff}$ = 3.35

Spontaneous emission: FWHM 32 cm⁻¹

 $\Delta v \sim 15 \text{ cm}^{-1}$ $\rightarrow L_{res} \sim 100 \text{ }\mu\text{m}$

Micro-Laser with PhCs

1 mm (cleaved) $\alpha_{m} = 13.1 \text{ cm}^{-1}$ 100 µm PhCs $\alpha_{m} = 16.3 \text{ cm}^{-1}$

Accepted for PTL

 $\rightarrow \mathfrak{S}_m \sim \text{constant}$

Performance of PhC micro-laser

80 K

- I_{th} = 1.6 A • I_{sat} = 2.4 A
- P_{max} = 7.3 mW

Performance limited due to

- High reflectivity of PhCs
- Current leakage
- Increased thermal resistance

Single-mode operation (1)

- Limited gain bandwidth
- Large mode spacing
- \rightarrow Only one mode excited

Tuning behaviour

Stable single-mode emission up to 180 K

→ enables single-mode tuning with temperature

Tuning rate of -0.046 cm⁻¹ / K

- Fabrication of high quality PhCs with large etch depths (> 14 μ m)
- 30% reduction of threshold current (20K) with 600 μm long devices
- \bullet 100 μm long micro-lasers: stable single-mode operation up to 180K
- Transfer to InP-based QCLs: possibility of room-temperature operation of PhC microlasers

Summary

Acknowledgement: M. Emmerling and A. Wolf