Diffuse Terahertz Reflection Imaging using Quantum Cascade Lasers

<u>P. Dean</u>, S. P. Khanna, S. Chakraborty, M. Lachab, A. G. Davies, E. H, Linfield

Institute of Microwaves and Photonics School of Electronic and Electrical Engineering University of Leeds, UK

p.dean@leeds.ac.uk

Outline

- Review of Imaging Techniques
 - Diffuse imaging
- Measurement of imaging resolution
- Demonstration of diffuse imaging of powders
 - Range of powdered materials
 - Range of particle sizes
 - Sensitivity to absorption coefficient and particle size
- Demonstration of diffuse imaging of concealed powders
- Discussion of imaging rates

Imaging Using Terahertz QCLs

Terahertz Imaging

- Transparency to non-polar materials
 - Non-invasive inspection and screening
- Non-ionising
 - Safe
- Spectral absorption features in many materials
 - Chemical finger-printing of drugs, explosives...
- Sub-mm wavelengths
 - Practical resolution
- Real-time video-rates possible
 - Removal of motion artefacts
 - Fast decision

THz Quantum Cascade Lasers

- High powers (~100 mW)
 - SNR, Transmission, Imaging rates
- Narrow linewidths (~30 kHz)
 - High spectral resolution
- Tunable
 - Atmospheric transmission
 - Spectral targeting
- Compact
- Room-temperature operation?
 - Getting there

Incoherent Imaging Modalities

Imaging of Powdered Samples

- Sub-surface scattering
- + Surface reflections
- Rms roughness $\sigma << \lambda$
 - \rightarrow Directional Specular
- Rms roughness $\sigma \sim \lambda$, > λ
 - → Non-directional Specular

('Diffuse-like')

Imaging Apparatus

- Closed-cycle Pulse-Tube refrigeration to 5K

- Simultaneous Bolometric and Pyroelectric detection
- Stand-off distance ~ 33 cm
- Good resolution (~300 μm), large depth-of-focus (~12 mm)

Bound to Continuum QCL

S. Barbieri et al., Appl. Phys. Lett., 85, 1674 (2004)

Transverse Optical Characterisation

Axial Optical Characterisation

- Depth-of-Focus = **12.3 mm** and **12.0 mm**
- Sub-millimeter beam for > 16 mm (5% of working distance)
- Sub-millimeter beam for > 24 cm for 5 m stand-off distance

Diffuse-Specular Imaging at 2.8 THz

• 5-pence coin (UK) concealed behind HDPE FedEx envelope

Optical

Specular

Diffuse-like

- Specular image shows smooth mirror-like surfaces as high intensity
- Diffuse-like image reveals non-directional specular reflections from rough surfaces
- Simultaneous acquisition of specular and diffuse-like images
 180 x 108 pixels; 27-min acquisition time (translation-limited)

Diffuse Imaging of Powders at 2.8 THz

Diffuse Imaging of Powders at 2.8 THz

Material	Particle size (µm)	Normalised image intensity
PE	53-75	1.00
PTFE	>1000	0.49
Polystyrene	6	0.33
PTFE	1	0.22
Lactose	>1000	0.13
AI_2O_3	< 10	0.12
Perspex	5	0.09
Sucrose	>1000	0.07

Sensitivity to absorption coefficient and particle size

Diffuse Imaging of Concealed Powders

• Polyethylene powder (53-75 μm) in re-sealable polythene bag

Unconcealed FedEx HDPE envelope FedEx padded envelope

35 mm

- Specular highlights from creases in bag
- Small contribution from concealing materials
- Convex air pockets partially distort powder
- 180 x 108 pixels (45 mm x 27 mm) in 27 mins
- Estimated minimum acquisition time ~ 2 mins (~7 secs for 1-mm pixels)

Diffuse Imaging of Different Particle Sizes

• PTFE (Teflon) powders (~1 g) in polystyrene sample holder

Particle sizes shown in µm

•Sub-surface scattering dominates

- Largest intensity for 100 µm powder
 - Largest Mie scattering coefficient
 - Largest back-scattered power
- Smallest intensity for 1 µm and 12µm powders
 - Smallest Mie scattering coefficients

• $|_{1\mu m} > |_{12\mu m}$

- Evidence for agglomeration?

Diffuse Imaging of Different Particle Sizes

- PTFE (Teflon) powders (~1 g) in polystyrene sample holder
- Admixtures of 100 µm and 12 µm powders

• Linear dependence on effective scattering coefficient $\mu_{eff} = c\mu_{100} + (1-c)\mu_{12}$

Image Acquisition Rate

- Compromise between acquisition rate and SNR, Dynamic range (DR)
- 6 ms processing time per pixel (~165 pps)
- 75 ms translation time (~13 pps)
- Pixel averaging time

Multi-wavelength Stand-Off Imaging for the Identification of Illicit Materials

A. Burnett, W. Fan

- Weak wavelength-dependence of scattering strength and surface reflections
- Strong wavelength-dependence of absorption coefficient
- Target transmission windows in atmosphere

Summary

Diffuse imaging modality

- Bulk samples
- Powders
- No specific sample alignment
- Sub-mm resolution, >24-cm depth-of-focus over 5-m stand-off distance
- Diffuse imaging of a range of concealed powders
 - Sensitivity to particle size
 - Linear dependence on effective scattering coefficient
 - Sensitivity to absorption coefficient

• Extension to multi-wavelength imaging for identification of materials

Acknowledgements

- Her Majesty's Government Communication Centre (HMGCC, UK)
- Research Councils (UK) Basic Technology Programme
- Engineering and Physical Sciences Research Council (EPSRC)