Ultrafast Intersubband All-Optical Switch in Wide-gap II-VI Quantum Well toward Lower Switching Energy Operation

R.Akimoto, Cong Guangwei, <u>K.Akita,</u> T. Hasama, H.Ishikawa Ultrafast Photonic Devices Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Japan

• • •

Outline

- Using the intersubband transition all optical switch for high bit rate operation (~160Gbit/s)
- Strong light confinement in waveguide for low switching energy
- Quantum well structure for low saturation energy

II-VI-ISBT all optical switch module

What's material requirement?

•Using at optical communication wavelength of 1.55µm

Large conduction band offset

• Ultrafast response (sub ps)

Large electron-LO phonon interaction

ISBT in II-VI (CdS/ZnSe)/BeTe QWS

1.59µm absorption

Covering the 1.55µm wavelength

ISB absorption recovery

Ultrafast relaxation Sub ps carrier relaxation time

(3) Control the relaxation time of ISBT

Switching extinction ratio : transmissivity change by absorption saturation 10dB at 13.3 pJ still high for practical application (10dB@1pJ)
Improve for absorption saturation energy more efficiency
Core structure Mesa width OW structure

Low switching energy by strong light confinement

Absorption saturation curve 10dB saturation energy 30 Index Mesa width

High index contrast between active and clad layers

Narrow mesa width ($\sim 1 \mu m$) with strong light confinement

••• Narrow mesa waveguide

K.Akita et al., Electron lett. 42, 1352 (2006)

- Fabricated by BCl₃/Ar based inductively coupled plasma(ICP) dry etching
- Mesa width narrow to ~0.9μm

Tapered structure : To reduce coupling loss with optical fiber

Optimization

QW structure and Waveguide structure

Running work !!

QW structure & *Waveguide* structure

••• QW for low switching energy

Saturation intensity

$$I_s = \frac{cn\varepsilon_0\hbar^2}{2\mu^2 T_1 T_2} \Delta t_p$$

 $\underline{T_1}$: Electron relaxation time

T₂: Phase relaxation time

 Δt_p :pulse width

Fast relaxation time \Rightarrow I_s : High

(CdS/ZnSe)/BeTe: ~0.2ps

How reduce the saturation energy ?

3 level coupled QW

e3 ➡ e2 ➡ e1

Trap carrier at e2

Slow decay occur

Greg Sun et al., APL. 87, 201108 (2005)

e2 trap e1

II-VI coupled QW

BeTe/ZnSe/CdS:well 1/ZnSe/BeTe/ZnSe:well 2

Absorption & relaxation time of CQW

2.3eV

E 2

• Optical confinement for forward direction of waveguide by DFB structure

Transmissivity

Waveguide with DFB structure

Light confinement for forward direction by DFB

- Light accumulation near the stop band To more efficiency absorption saturation
- New switching ? Stop band shift by nonliner effective index change!

Light accumulation

DFB effect for low switching energy <u>1D FDTD simulation</u>

Electric filed intensity of waveguide

DFB structure for low switching energy

Summary

Waveguide toward device application Successful fabrication of II-VI-based ISBT narrow-mesa waveguide with strong light confinement

Low switching energy characteristics in ISBT waveguide 10dB@4pJ (1.62µm) Lowest switching energy in ISBT switch

 Produce the II-VI coupled QW for low saturation energy Control the ISBT relaxation time (0.2→3ps)

• Produce the DFB waveguide for low switching energy

Thank you for your attention !!

• • Switching characteristics: comparison

System	InGaAs/ AIAsSb (c- DQW)	GaN/ AlGaN	(CdS/ ZnSe)/ BeTe
	FESTA	Toshiba	AIST
10dB satration (pJ)	32 ①	100 ②	4
	moderate	high	low
Switching time (ps)	0.69~2	0.16~0.4	~ 0.2
	moderate	ultrafast	ultrafast
Remark	ТРА	loss from dislocation	

②N.Iizuka et al., Opt.Express, 2005 (1)S.Sekiguchi et al., OFC, 2005 ③K.Akita et al., Electron lett. 42, 1352 (2006)

Two photon absorption of InGaAs system

II-VI system is wide bandgap (2.3eV) \Leftrightarrow

TM loss from dislocation of GaN system

⇔ II-VI system can Grow on GaAs substrate with lattice matched

Smooth sidewall

Narrow mesa effect for insertion loss

Mesa width dependence

Mesa width $< 2\mu m$ rough sidewall: large insertion loss

Propagation loss

Smooth: Not depend on waveguide length

Rough : Propagation loss 7.5dB/mm

Narrow mesa effect for absorption saturation

