SELECTION RULES FOR INTERSUBBAND TRANSITIONS IN VALLEY SPLIT [001]-SiGe QUANTUM WELLS

M. Virgilio and G. Grosso

NEST-INFM-CNR

Università di Pisa

Intervalley interaction in confined [001]-SiGe structures

.Tight-binding description of SiGe multilayers

Valley splitting oscillation

-Selection rules and signature of intervalley interaction in the intersubband absoption

.Conclusions

Experimental

. A. B. Fowler et al., Phys. Rev. Lett. 16, 901 (1966).

• • • • •

. K. Takashina et al., Phys. Rev. Lett. 96, 236801 (2006).

• M. A. Wilde et al. Phys. Rev. B 72, 165429 (2005).

Theoretical

. L. J. Sham and M.Nakayama, Phys. Rev. B 20 734 (1979).

•

• T. B. Boykin et al., Appl. Phys. Lett. 84, 115 (2004).

• M. O. Nestoklon, L. E. Golub, and E. L. ivchenko Phys. Rev. B **73**, 235334 (2006).

. A. Valavanis, Z. Ikonić, and R. W. Kelsall, Phys. Rev. B 75, 205332 (2007).

• Macroscopic **ELASTICITY THEORY** for the atomic site positions

• *s,p,d* and *s** orbital with **SPIN-ORBIT** coupling and **FIRST-NEIGHBOR** interaction.

- Self and hopping energies reproduce **BULK** Si and Ge band structure.

• VIRTUAL CRYSTAL APPROXIMATION for SiGe alloys.

$$\langle \Psi^f(\vec{k},\vec{r}) | \hat{\epsilon} \cdot \vec{p} | \Psi^i(\vec{k},\vec{r}) \rangle = \hat{\epsilon} \cdot \vec{p}^{fi}(\vec{k})$$

$$\vec{p}^{fi}(\vec{k}) = \sum_{m,l} \sum_{\mu,\nu} A_m^{\mu*}(\vec{k}, f) A_l^{\nu}(\vec{k}, i) \sum_n e^{ik_z \tau_{nz}} e^{\vec{k}_{\parallel} \cdot (\vec{\tau}_n + \vec{d}_{\nu} - \vec{d}_{\mu})} \langle \phi_m(\vec{r} - \vec{d}_{\mu}) | \vec{p} | \phi_l(\vec{r} - \vec{\tau}_n - \vec{d}_{\nu}) \rangle$$

Decimation-renormalization method

Decimation-renormalization method

Band edges profiles for $Si_y Ge_{1-y}/Si_x Ge_{1-x}$ heterointerfaces

M. Virgilio, and G. Grosso, J. of Phys. : Condes. Matter., 18, 1021 (2006)

Valence intersubband transitions in SiGe QW

Conduction intersubband absorption at normal incidence

M. Virgilio and G. Grosso, Nanotechnology, 18, 075402 (2007);

Valley splitting oscillations

Valley splitting oscillations

Valley splitting oscillations

Ninth International Conference on Intersubband Transitions in Quantum Wells

Selection rules

Germanium

Silicon intersubband absorption

M. Virgilio and G. Grosso, Phys. Rev. B, 75, 235428 (2007)

Silicon intersubband absorption

Germanium intersubband absorption

Germanium intersubband absorption

Germanium intersubband absorption

Ninth International Conference on Intersubband Transitions in Quantum Wells

 Electronic states and optical properties (intraband+intersubband) of SiGe QWs with tightbinding Hamiltonian

.Valley splitting in SiGe QW structures

Signatures of intervalley splitting in the intersubband absorption spectrum

Optical measurement of valley splitting

Selection rules with electric field

Method (III): dipole operator in the tight-binding model $\langle \Psi^f(\vec{k},\vec{r}) | \hat{\epsilon} \cdot \vec{p} | \Psi^i(\vec{k},\vec{r}) \rangle = \hat{\epsilon} \cdot \vec{p}^{fi}(\vec{k})$ $\vec{p}^{fi}(\vec{k}) = \sum_{i} \sum_{j} A_m^{\mu*}(\vec{k}, f) A_l^{\nu}(\vec{k}, i) \sum_{j} e^{ik_z \tau_{nz}} e^{\vec{k}_{\parallel} \cdot (\vec{\tau}_n + \vec{d}_{\nu} - \vec{d}_{\mu})} \langle \phi_m(\vec{r} - \vec{d}_{\mu}) | \vec{p} | \phi_l(\vec{r} - \vec{\tau}_n - \vec{d}_{\nu}) \rangle$ $\vec{p} = \frac{m}{i\hbar}[\vec{r}, H]$ $\langle \phi_m(\vec{r} - \vec{d_\mu}) | \vec{r} | \phi_l(\vec{r} - \vec{\tau_n} - \vec{d_\nu}) \rangle \simeq \delta_{m,l} \delta_{\vec{d_\mu}, \vec{\tau_n} + \vec{d_\nu}}(\vec{\tau_n} + \vec{d_\nu})$ $\hat{\epsilon} \cdot \vec{p}^{fi}(\vec{k}) = \frac{m}{i\hbar} \sum_{m,l} \sum_{\mu,\nu} A_m^{\mu*}(\vec{k}, f) A_l^{\nu}(\vec{k}, i) \sum_n e^{ik_z \tau_{nz}} e^{\vec{k}_{\parallel} \cdot (\vec{\tau}_n + \vec{d}_{\nu} - \vec{d}_{\mu})}$ $\hat{\epsilon} \cdot (\vec{\tau}_n + \vec{d}_\nu - \vec{d}_\mu) \langle \phi_m(\vec{r} - \vec{d}_\mu) | H | \phi_l(\vec{r} - \vec{\tau}_n - \vec{d}_\nu) \rangle$ $\hat{\epsilon} \cdot \vec{P} = \begin{pmatrix} 0 & F_1 & 0 & \dots & \dots & 0 & e^{-ik_z l_z} F_2 \\ F_1^{\dagger} & 0 & F_2 & 0 & \dots & \dots & 0 \\ 0 & F_2^{\dagger} & 0 & F_1 & 0 & \dots & \dots & 0 \\ 0 & 0 & F_1^{\dagger} & 0 & F_2 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & F_2^{\dagger} & 0 & F_1 \\ e^{ik_z l_z} F_2^{\dagger} & 0 & \dots & \dots & 0 & F_1^{\dagger} & 0 \end{pmatrix}$ $\alpha(\hbar\omega) = \frac{4\pi e^2\hbar}{n_0 cm_0^2 V\Gamma} \sum_{\vec{r}} \sum_{\vec{k},i} \frac{\hat{\epsilon} \cdot \vec{p}^{f,i}(k)}{E_f(\vec{k}) - E_i(\vec{k})} \cdot \{f[E_i(\vec{k})] - f[E_f(\vec{k})]\} \cdot \frac{1}{1 + (\frac{E_f - E_i - \hbar\omega}{\Gamma})^2}$

Ninth International Conference on Intersubband Transitions in Quantum Wells

interband transitions in SiGe QW

Ninth International Conference on Intersubband Transitions in Quantum Wells

125

150

175

Dipole operator in the tight-binding model

$$\alpha(\hbar\omega) = \frac{4\pi e^2\hbar}{n_0 c m_0^2 V \Gamma} \sum_{\vec{k}} \sum_{f,i} \frac{\hat{\epsilon} \cdot \vec{p}^{f,i}(\vec{k})}{E_f(\vec{k}) - E_i(\vec{k})} \cdot \{f[E_i(\vec{k})] - f[E_f(\vec{k})]\} \cdot \frac{1}{1 + (\frac{E_f - E_i - \hbar\omega}{\Gamma})^2}$$

$$\langle \Psi^{f}(\vec{k},\vec{r}) | \hat{\epsilon} \cdot \vec{p} | \Psi^{i}(\vec{k},\vec{r}) \rangle = \hat{\epsilon} \cdot \vec{p}^{fi}(\vec{k})$$
$$\vec{p}^{fi}(\vec{k}) = \sum_{m,l} \sum_{\mu,\nu} A_{m}^{\mu*}(\vec{k},f) A_{l}^{\nu}(\vec{k},i) \sum_{n} e^{ik_{z}\tau_{nz}} e^{\vec{k}_{\parallel} \cdot (\vec{\tau}_{n} + \vec{d}_{\nu} - \vec{d}_{\mu})} \langle \phi_{m}(\vec{r} - \vec{d}_{\mu}) | \vec{p} | \phi_{l}(\vec{r} - \vec{\tau}_{n} - \vec{d}_{\nu}) \rangle$$

Conduction intersubband absorption at normal incidence

