
Use of Al0.9Ga0.1As cladding 
increases the optical 
confinement factor (Γ) to 
compensate for the reduced 
number of stages

Γ = 32%
Waveguide loss, αw = 15 cm-1

Similar Γ and αw values as for 
the GaAs/Al0.45Ga0.55As 
structure1
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Deep-well approach can be used to reduce the emission 
wavelength in GaAs-based devices to 6.7 µm at no penalty in 
device performance

- Jth = 5 kA/cm2 at 77K and 14 kA/cm2 at 300 K
- Alternate structure: Jth = 9.5 kA/cm2 at 300 K

Deep-well approach can be applied to lattice-matched InP-based 
devices to lower their emission wavelength below 7µm

Compared to InP-based devices with all wells/barriers strained
- simpler to implement as strain is only in the active wells
- potentially more reliable

ABSTRACTABSTRACT
Design and simulation of a GaAs-based quantum cascade lasers (QCLs) 

emitting at 6.7 µm. 
– Introduction of compressively strained In0.1Ga0.9As only in the active 
quantum wells, where the optical transition occurs
– Monte-Carlo simulation including both Γ- and X-valley transport
– Proposed QCLs can achieve room-temperature lasing at threshold-current 
densities in the 9.5 to 14 kA/cm2 range, lower than those of the conventional 9.4 
µm GaAs-based QCLs1
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Background : GaAs/AlBackground : GaAs/Al0.450.45GaGa0.550.55As based As based QCLsQCLs

9.4 µm QCL  by Page et. al.1
– Γ-point conduction band offset: 370 meV
– Pulsed room-temperature operation and CW operation up to 150 K 
from 36-stage devices
– Pulsed: Jth(77 K) = 4 kA/cm2, Jth(300 K) = 16.7 kA/cm2

• Lasing wavelength limited to above 8 µm due to intervalley electron transfer 
when the upper lasing level is aligned with the lowest X-valley state of the  
injection barrier2

• Lowest wavelength achieved: 7.3 µm using a double-injection-barrier design, 
but only lased at cryogenic temperatures2
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• Deep compressively strained 
In0.1Ga0.9As active wells
• GaAs0.6P0.4 layer used just before the 
injection barrier to partially compensate 
strain (net compressive strain = 0.07%) 
=> 25-stage QCL
• Conduction-band offset of the active 
region increases by 45 meV. Transition 
energy increases by 54 meV
• Lifetimes: τ3=1.5 ps, τ21=0.3 ps. 
Transition matrix element: |z32|=1.5 nm
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DeepDeep--well GaAs/Alwell GaAs/Al0.450.45GaGa0.550.55As/InAs/In0.10.1GaGa0.90.9As QCL designAs QCL design

MonteMonte--Carlo simulation Carlo simulation 

• Γ-states are solved for using the k.p method, and the X-valley states 
are solved within the effective-mass framework4,5

• Both Γ- and X-valley transport are taken into account

• Includes all relevant scattering mechanisms within the same stage 
and between adjacent stages (stage  ≡ active region + injector region):

– electron-LO phonon

– electron-electron

– intervalley scattering

Dominant leakage => Interstage scattering from the Γ-bound states 
(black) to the Γ-continuum states (green)

Intrastage scattering then happens between the Γ-continuum states 
(green) to the X-valley bound states (blue and brown), and leads to 
interstage X-to-X leakage current

77 K: Almost no leakage to 
the X-valleys

300 K: Significant X-valley 
leakage due to increased 
electron population of the 
upper injector states and 
scattering to the Γ-
continuum states

At 77 K and 300 K, with and without the inclusion of X-valley 
transport:
– Inclusion of X-valley transport causes the gain to saturate at ~25 
cm-1 (lasing can be achieved with up to 25 cm-1 total losses)
– Total losses: αw + αm = 19 cm-1 => estimated thresholds at 77 K 
and 300 K are 5 kA/cm2 and 14 kA/cm2, respectively

Modal gain vs. Current density Modal gain vs. Current density 

Deep-well compressively 
strained intersubband-
transition devices

– Quantum wells in the active 
region are lower in energy than 
the quantum wells in the 
injector region
– Achieved, for GaAs-based 
based devices, first mid-IR 
(λ=4.7 µm) emission from 
single-stage devices3
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Modified structure for low JModified structure for low Jthth at 300 Kat 300 K

• Jth = 9.5 kA/cm2 at 300 K (structure B, green line)

Thicker injector well before the injection barrier: 

Reduced leakage to the continuum

Larger energy separation between the injector ground state 
and the upper lasing level

– weaker coupling between the two states at 77K => no 
lasing at 77K

– active phonons distribute electrons to higher Γ-subbands 
at 300 K => lasing can occur at 300K
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