Intersubband Devices Operating in the Restrahlen Region

Jacob B. Khurgin The Johns Hopkins University Baltimore, Maryland 21218, USA

Greg Sun University of Massachusetts Boston Boston, Massachusetts 01887, USA

Abstract

- We investigate characteristics of intersubband optical devices in which waveguiding is provided by highly-reflective semiconductor in the restrahlen band.
- We identify spectral regions within the restrahlen band of a cladding layer that offers advantages over both traditional dielectric waveguide and metal clad waveguides.

Far-IR Waveguide Challenges

- QCLs require waveguides of high optical confinement with low loss
- Conventional dielectric waveguides are unsuitable due to low index contrast and difficulty in growing thick layers
- Plasmon waveguides are highly absorptive due to fast energy relaxation rates of electrons (~10fs for Au)

Waveguides Using Surface Phonon Polaritons

- Transitions associated with optical phonons with scattering times ~ps are less prone to scattering
- Materials with negative dielectric constant in the far-IR Restrahlen region behave just like a metal
- Waveguides formed with cladding material in Restrahlen region, can support surface phonon polariton TM modes that are evanescent in both core and cladding
- Such waveguides offer desired confinement
 with less loss

Surface Phonon Polaritons

Restrahlen band between TO and LO phonons with negative dielectric function

Two GaAs-based QCLs operating in the Restrahlen region of GaN are compared: a)GaN as cladding (surface phonon polarions) b) Au as cladding (surface plasmon polaritons)

TM Modes

Both waveguides will support TM modes:

$$\mathbf{E} = \begin{cases} \frac{\cosh(kd/2)}{\varepsilon} E_o(j\beta \mathbf{\hat{x}} + q\mathbf{\hat{z}})e^{-q(x-d/2)}e^{j(\beta z - \omega t)}, & x > d/2\\ E_o[j\beta \cosh(kx)\mathbf{\hat{x}} - k\sinh(kx)\mathbf{\hat{z}}]e^{j(\beta z - \omega t)}, & |x| < d/2\\ \frac{\cosh(kd/2)}{\varepsilon} E_o(j\beta \mathbf{\hat{x}} - q\mathbf{\hat{z}})e^{q(x+d/2)}e^{j(\beta z - \omega t)}, & x < -d/2 \end{cases}$$

 $\beta = \beta' + j\beta''$ Complex wave vector

 $\varepsilon = \varepsilon_{P,M} / \varepsilon_D$ Dielectric functions of GaN (ε_p) and Au (ε_M) Dielectric constant of GaAs (ε_D)

$$k^{2}[\varepsilon^{2} \tanh^{2}(kd/2) - 1] = 1 - \varepsilon$$
 Confined modes

Dielectric Functions

Optical Confinement

In general, plasmon waveguides provide better optical confinement

Wavequide Loss

Smaller waveguide loss in the narrow spectral range within the Restrahlen region of the GaN cladding is the result of slower scattering time of the optical phonons

Threshold Gain

Conclusion

There exists a narrow spectral range within the Restrahlen region of the cladding material where a reduction in threshold can be obtained using surface phonon polariton waveguide.