

Interdiffusion Effects on Hole Intersubband Absorption In Complex GaAs/AlGaAs Quantum Well Structures

Z. Ikonić¹, O. Malis², L. N. Pfeiffer³, K. W. West³, and P. Harrison¹

¹Institute of Microwaves and Photonics , School of Electronic & Electrical Engineering, University of Leeds, LS2 9JT, UK ²Department of Physics, SUNY at Binghamton, Binghamton, NY13902-6000, USA ³Bell Labs , Lucent Technologies, Murray Hill, NJ07974, USA

1. Hole Subband Structure and Intersubband Absorption Calculation in p-doped GaAs/AlGaAs **Quantum Well Structuress**

- Hole intersubband transitions: optically active for both polarizations of light
- Potential applications for IR detectors and for quantum cascade lasers
- •6X6 k.p model, fully accounts for anisotropy and nonparabolicity of hole subband dispersion
- Charge self-consistency
- Wavevector dependence of optical matrix elements, and depolarization shift included

3. Interdiffusion

An initially abrupt-interface multilayer structure, with N layers having the composition x_j (Al_{xi}Ga_{1-xi}As), j = 1, ..., N, embedded between bulk slabs with composition x_0 on the left and x_{N+1} on the right, acquires the composition profile

$$x(z,t) = \sum_{j=1}^{N} \frac{x_j}{2} \left[Erf\left(\frac{z-z_{j-1}}{L_d}\right) - Erf\left(\frac{z-z_j}{L_d}\right) \right] + \frac{x_0}{2} \left[1 - Erf\left(\frac{z-z_0}{L_d}\right) \right]$$

$$\frac{x_{N+1}}{2} \left[1 + Erf\left(\frac{z-z_N}{L_d}\right) \right]$$

where *j*-th layer boundaries are
 z_{j-1} and z_j , and the interdiffusion
length is $L_d = 2\sqrt{Dt}$.
• Interdiffusion

Interdiffusion significantly distorts the initial profile of thin-layer structures

interdiff. - 0.5 nm interdiff. - 0.6 nm interdiff. - 0.7 nm interdiff. - 0.8 nm

interdiff. - none

- SALANARSER

terdiff. - 0.7 nm

interdiff. - 0.8 nm

vg.barr., no i

- z-polariz

avg.barr., no interd

- This is not the problem of the accuracy of 6X6 k.p model (compares well with the EPM based calculation)
- Does the fast scattering (relaxation) of high energy states affect the absorption spectra? Finite coherence length problems? [Still, one period of the superlattice is almost as effective as the full superlattice in the formation of the absorption profile.]

2. Quantum Wells in Superlattice Barriers

(O. Malis, et al., Appl. Phys. Lett., 87, 091116 (2005))

3.1 nm well

5. Discussion

- Including interdiffusion, as well as other effects, is necessary for correct interpretation of hole subband energies in complex GaAs/AlGaAs structures
- The interdiffusion lengths can be deduced from the absorption spectral profiles
- Heavy hole subband energies and the related absorption spectra are predicted very accurately
- There still remains an open question of LH subbands, particularly for high energies (e.g. for LH resonant, unbound states): the `average barrier' model works better in such cases!

