

Fast intraband capture and relaxation of electrons in InAs/GaAs self-assembled quantum dots

E. A. Zibik,¹ S. Menzel,¹ P. Aivaliotis,¹ B. A. Carpenter,¹ D. Stehr,² S. Winnerl,² M. J. Steer,³ M. Hopkinson,³ J. W. Cockburn,¹ M. S. Skolnick,¹ and L. R. Wilson¹

¹ Department of Physics and Astronomy, University of Sheffield, S3 7RH, UK; ²Institute of Ion Beam Physiscs and Materials Research, Forschungszentrum Rossendorf, P.O. Box 510119, 01314 Dresden, Germany ³ EPSRC National Centre for III-V Technologies, Sheffield, S1 3JD, UK

Summary

- One and two colour pump-probe study of intraband relaxation processes in n-type InAs/GaAs quantum dots (QDs) for electron transition energies between 100 and 180 meV.
- Relaxation time from high energy QD excited / wetting layer states ~5ps in the presence of holes and ~8ps in the absence of holes.

Intraband pump-probe results

~120 meV

0 meV

continuum ~230 meV GaAs barrier WL-states ~170 meV

d-states

s-state

Probe p-states \rightarrow ~55 meV

InAs QD

Pump

smissio

ed

• 45° multipass waveguide geometry (~10 passes through the QD layers)

- Using intraband absorption spectroscopy information about the electron energy structure in QDs can be obtained
- One colour pump-probe measurements
- Only electrons are excited (no holes)

Wavelength (µm)

- Increase of the QD population decreases the capture/relaxation time.
- Fast electron relaxation in QDs occurs multiphonon emission due to via nonadiabatic electron-phonon interaction directly into the QD ground state
- sequential scattering process \Rightarrow involving the p-state can be ruled out (because s-p transition τ ~50ps).
- Due to the relatively long high energy excited state lifetime (~10ps), QD photodetectors infrared the have for higher efficiencies than potential quantum well infrared photodetectors.

- •Relaxation time for electron energy of ~140meV is ~4 ps, interesting because p-s relaxation time is \sim 50ps in the same sample [1] \Rightarrow apparently electrons avoid p-state
- •Clear bi-exponential dependence is observed at 180 meV with short decay time of ~8 ps and long decay time of ~300 ps at 10K
- Increase of the QD population from ~1 to ~6 e/dot decreases the capture/relaxation time from ~4.8 ps to ~2 ps at 8 µm
- The long decay time decreases from ~400 ps to ~13 **ps** with increase of number of electrons in QDs from ~1 to ~6

Temperature dependence Interband pump – intraband probe results —— PLE signal at 1120 nm, 77 K ~10 μm (~125 meV) - fit: p=4, E_{phonon}=25 meV, S=1 *Ih* & *hh* WL states Interband pump intraband probe ~8 µm (~155 meV) --- fit: p=5, E_{phonon}=25 meV, S=1.2

- Fast relaxation time and weak temperature dependence nonadiabatic electron-phonon interaction (observed previously in PbSe colloidal QDs [2]).
 - From [3], for (p+4)²>>4S²n(n+1) where: p – number of emitted phonons, S – Huang-Rhys factor

$\Gamma = \Gamma_0 \cdot (1+n)^p \cdot e^{-2 \cdot S \cdot n}$ n = - $\hbar\omega$ $e^{kT} - 1$

<u></u>
<u>
</u> *Sħω*

References

- [1] E.A. Zibik *et al.*, Phys. Rev. B **70**, 161305 (2004)
- [2] R.D. Schaller *et al.*, Phys. Rev. Lett. **95**, 196401 (2005)
- [3] B.K. Ridley, *Quantum processes in semiconductors* (Claredon, Oxford, 1999)

