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Summary and Outlook

Motivation

Quantum cascade lasers (QCLs) are unipolar injection lasers emit-
ting in the mid- and far-infrared.  Bandstructure engineering allows 
tailoring the emission wavelength and designing electronic levels 
that enhance intersubband nonlinearities. Nonlinear light genera-
tion in QCLs is not only an interesting field for basic research, it also 
extends the wavelength range of these devices. As the laser emis-
sion energies are typically well below the band gaps of the hosting 
materials (GaAs or InP), intracavity second-harmonic (SH) genera-
tion is feasible in these semiconductor lasers. Investigation of the 
nonlinear conversion efficiencies of QC active regions, and finding 
suitable wavegeuides that minimise the phase mismatch are neces-
sary for efficient nonlinear light sources. 
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Nonlinear light generation
in GaAs quantum-cascade lasers

Phase-matching in Fabry-Perot devices 
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The waveguide was designed to 
reach modal phase matching 
between the TM00  and the TM02 
mode at a ridge width around 25 
µm. The conversion efficiency ac-
tually shows a maximum, at 30 
µm although the FF does not 
agree with a TM02 mode.   
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Bandstructure & Performance

Calclulations using fourier transformation give the field on a sphere 
whereas the measurement is carried out on a plane:

+ the projection lowers the signal at wide angles

+ the 1 
r²  decay of the flux density also lowers 

 the signal at wide angles

Small angle double lobe emission origi-
nates from counter propagating waves.

Surface Emission from 2nd order DFB  SH devices
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The grating was designed to be 1st order 
for the fundamental mode and hence it is  
2nd for the SH mode. The device is only 
emitting SH via the surface. 
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The phase mismatch and interference ef-
fetcs are mechanism for multi lobe emis-
sion as the SH wave vector does not per-
fectly match the 2nd order Bragg condition.
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External conversion efficiency 
vs.  ridge width

We presented SH generation in GaAs/AlGaAs quantum cascade lasers due 
to intersubband nonlinearities.  We investigated different active regions, 
active region doping levles and waveguides with respect to the nonlinear 
conversion efficiency. The SH radiation can be coupled out by a surface DFB 
grating,  where the surface emission pattern can give information on the 
phase-mismatch between the fundamental and SH fields. Future goals in-
clude the investigation of intracavity difference-frequency generation in QC 
lasers and the application of grating-coupled emission for this purpose.
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DFB laser surface farfield measurements
 Structure 
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Three QC active regions: 3-well AlAs (A), bound-to-continuum 
(B), 3-well AlGaAs are investigated with respect to their non-
linear output. Doping is shown to have an influence on the 
conversion efficiency, as well as the waveguide type.
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