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M. Załużny1 and C. Nalewajko2

1Institute of Physics, M. Curie-Skłodowska

University, Lublin, Poland
2Department of Physics, Center

of Oncology of Lublin Region, Lublin, Poland



INTRODUCTION

The linear intersubband response of multiple-quantum-

well (MQW) structures embedded in microcavities has

been studied by many authors for, both fundamental physics

and application reasons. The strong-coupling-regime (SCR),

in which the dipole coupling between intersubband exci-

tation and the cavity photon gives rise to coherent mixed

modes, often referred to as “intersubband cavity polari-

tons”, has recently received a lot of attention [1-3]. In

view of applications for optoelectronic devices, the analy-

sis of the nonlinear intersubband properties is a funda-

mental and intriguing field of microcavity physics. Previ-

ous works devoted to the above mentioned subject con-

centrated on the systems where conditions for the SCR

are not fulfilled [4,5].

In this paper, we discuss theoretically the influence of the

cavity effect on the nonlinear intersubband response go-

ing beyond the weak coupling regime. We employ a non-

iterative numerical method developed in our previous pa-

per [6]. It is based on the transfer matrix method and the

so-called sheet model. The advantage of this approach

is that it includes, contrary to the approach based on the

slowly varying envelope approximation (SVEA) [4] the

radiative coupling among QWs. The method is very gen-

eral and can be used for arbitrary layered structures with



embedded MQWs. Performing numerical calculations we

neglect for simplicity the influence of the electron-electron

interaction on the intersubband response [7], i.e. we take

into account only the saturation effect associated with

the light induced redistribution of electrons between the

ground and excited subband. The simplified analytical

approach based on the mean field approximation is also

presented discussed.

THEORY

Numerical approach. Let us assume that a layered struc-

ture with an embedded MQW is sandwiched between the

semi-infinite substrate (j = 0) and cladding (j = m+1)

media. The quasi-two dimensional electron gas (Q2DEG)

located in QW is modeled by a 2D sheet [6,7,8]. Light,

polarized in the x-z plane, incidents from the substrate

medium (with a dielectric constant ε0 = εs) at the angle

θ with respect to the optic axis z oriented parallel to the

growth direction. Then, there is only a single component

of the magnetic field H(r,t) = eyHy(z)ei(kxx−ωt) in

each medium. Let us denote by H
(j)
α+ and H

(j)
α− (α =

l, u) the complex amplitudes of the magnetic field corre-

sponding to the waves travelling in positive (+) and neg-

ative (−) z-directions, respectively. The subscript l(u)

indicates that we take the amplitude with respect to the

plane separating the media j and j + 1 (j − 1 and j).



The reflectance of the structure can be written as

R = |H(0)
l− /H

(0)
l+ |2. (1)

The relation between the amplitudes of the magnetic field

in the q and p(> q + 1) media (layers) may be written

in terms of the transfer matrix [8]:


 H
(q)
l+

H
(q)
l−



 = Iq,q+1

p−1∏

j=q+1

LjIj,j+1



 H
(p)
u+

H
(p)
u−



 . (2)

The explicit expression for matrix Lj (Ii,j) describing the

effect of propagation through the jth layer (i|j interface)
can be found in our previous paper [8]. The transfer

matrix Ii,j(≡ IN ) across the 2D sheet can be written in

terms of the light intensity dependent 2D intersubband

conductivity. In the RWA (and two subband limit) it

takes the form [6,7]

σ2Dzz (ω, |Ez|2) = AQW
1 + i∆

1 +∆2 + |Ez/Esat
z |2, (3)

where AQW = Nsf12e
2/2m∗ΓIT, m∗ is the effective

electron mass, f12 = 2m∗�−1ω21|z12|2 is the oscilla-

tor strength, Esat
z = �(ΓITΓ21)

1/2/|d12|, ∆ = (ω −
ω21)/ΓIT, τ IT = 1/ΓIT is the dephasing time, τ21 =

1/Γ21 is the phenomenological life time, Ez is the nor-

mal component of the electric field, Ns is the surface



electron density, and ω21 (d12 = ez12) is the intersub-

band resonant frequency (the dipole matrix element).

The reflectance of the microcavity (at a fixed frequency ω

or fixed intensity I in of the incident radiation in the sub-

strate medium) has been calculated numerically using the

recursion method [6]. More precisely, H
(0)
l+ (and H

(0)
l− )

corresponding to an arbitrary value of H
(m+1)
u+ (and ω)

has been obtained moving from the output side (medium

m+1) to the input side (medium 0). Note that we em-

ploy the fact that the amplitude H
(0)
l+ can be treated as

a single value function of H
(m+1)
u+ which can be taken as

a (real) parameter.

Analytical approach. To get useful analytical results re-

taining main qualitative features of the system we employ

an approach similar to the one developed in [9]. Let us

consider the following simple microcavity-MQW system.

The MQW (composed of NQW wells) is located between

the front (at z = 0) ) and back (at z = Lcav) mirrors

with reflection coefficients rfe
−iψf and e−iψb, respec-

tively. The half-space z < 0 occupies the substrate ma-

terial. The difference between the dielectric constant of

the substrate material (εs), the barrier material (εb) and

the well material (εw) is neglected (εs = εb = εw). We

also assume that Tf = (1 − r2f) ≪ 1. In this limit the



resonant frequency (ωcav) and the half line width (Γcav)

of the ground mode of the passive cavity are given by

ωcav =
(2π − ψf − ψb)c
2ε

1/2
w Lcav cos θ

, Γcav =
Tfc

4ε
1/2
w Lcav cos θ

,

(4)

We describe the influence of the intersubband excitations

on the cavity reflection spectra within the mean field ap-

proximation [9]. This approximation is equivalent to the

following substitution:

|Ez/Esat
z |2 → X = L−1cav

∫ Lcav

0
|Ez/Esat

z |2dz. (5)

In this limit the reflectance (r2D) and transmitance (t2D)

of the sheet does not depend on its position in the mi-

crocavity and can be written as

r2D = Λ/(1 + Λ), t2D = 1/(1 + Λ), (6)

where Λ = Λ̄(1 + i∆)/̥, ̥ = 1 +∆2 +X and

Λ̄ = (4π/c
√
εw)AQW tan θ sin θ. (7)

Since, for realistic values of QW parameters, |Λ| ≪
1 the relations (6) can be approximated by r2D = 0

and t2D = exp(−Λ). (This approximation is consis-

tent with the SVEA.) To proceed further we assume that

ΛMQW = Λ̄NQW and T go to zero, while their ratio

C = ΛMQW/T remains constant and arbitrarily large.



Taking into account the above mentioned simplifications

we can get the relation between Y and X by summing,

like in Ref. [9], the bi-directional multireflected (from the

mirrors) waves and averaging over the cavity width Lcav.

The result is

Y

X
=

∣∣∣∣

(
1 +

2C

̥

)
+ i

(
2C∆

̥
− ω − ωcav

Γcav

)∣∣∣∣
2

, (8)

where Y = 8 sin2 θI inF/IsatT, Isat = c
√
εw(Esat

z )2/8π

is the saturation intensity and F it is a factor (of the

order unity) depending on ψb and ψf . In the case of

metallic mirrors one can take F ∼=1. (The above equa-

tion has the same form as the one discussed in Ref. [10].

Note that the authors of this paper considered an opti-

cal cavity filled with two-level atoms starting from the

coupled Maxwel-Bloch equations.) In the resonant case

(ω − ω21 = ω − ωcav ≡ Ω) we get [10]

X

Y
=

∣∣∣∣∣
Γcav(Ω + iΓIT)

(Ω + iΓcav)(Ω + iΓIT)− Ω̃2
VR

∣∣∣∣∣

2

(9)

=

∣∣∣∣∣
A+

Ω−Ω+
+

A−
Ω−Ω−

∣∣∣∣∣

2

,

with

A± = Γcav(ΓIT +Ω±)/(Ω∓ −Ω±) (10)



Ω± = −iΓIT + Γcav

2
±
√

Ω̃2
VR −

(
ΓIT − Γcav

2

)2
, (11)

Ω̃2
VR = Ω2

VR

[
1 +X Γ2IT/(Ω

2 + Γ2IT)
]−1

, (12)

Ω2
VR =

πf21e
2N tan2 θ

m∗εw
=

2πω21|d21|2N tan2 θ

εw�
,

(13)

where N = NQWNs/L is the MQW electron density.

Thus we can see that in the limit of low excitations,

X ≪ 1, the system behaves like two coupled harmonic

oscillators corresponding to the normal mode (Ω±) of the
MQW-microcavity system. When ΓIT = Γcav, the min-

imal separation between the above modes is of twice of

the vacuum Rabi frequency ΩVR.

The inspection of the numerical results reported in [10]

indicates that, when the intensity increases the peaks of

the functionX(Ω)move towards the on-resonance centre

and deform into a multivalued shape before they meet.

In the approximation used here the power (P ) dissipated

in the system is proportional to the product X Reσ2Dzz ∝
X/̥. Since ̥ depends on Ω much weakly than X the

spectral shapes of the absorptance of the structure A(=

1−R) and X should be qualitatively similar, particularly

in the region where ∆2 � X.



RESULTS AND DISCUSSION

The numerical calculations have been done for the res-

onant asymmetric [metal clad (Fig. 1) and purely di-

electric (Fig. 2)] microcavities similar to those studied

recently in Refs. [1] and [2], respectively. The obtained

results are displayed in Figs. 3 and 4. As one can expect

we observe quantitatively an anharmonic evolution from

the two vacuum Rabi dips in the low-intensity regime to

the single reflection dip in the high intensity limit. In

the transition region, the vacuum Rabi dips shift and de-

form. Reflection exhibits then multistable behavior. The

above mentioned evolution is consistent with the one pre-

dicted by the simplified theoretical description based on

the mean field approximation [9,10]. We have checked

that in the case of the structure considered in Fig. 3 the

reflection dip evolution is substantially modified by: (i)

the Drude absorption in Au and n-GaAs layers, and (ii)

the formation of higher order polaritons (a small central

dip).
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Figure 1: The prism coupling scheme (a) and the details

of the metal clad microcavity structure studied in Ref.

[1] (b,c).
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Figure 2: The prism coupling scheme (a) and the details

of the dielectric microcavity similar to studied in Ref. [2]

(b,c).
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Figure 3: The spectral shape of R calculated for the

structure presented in Fig.1 at different values of I in/Isat.

Ns×f12 = 2×1010 cm−2, �Γ = 1.1 meV, θ = θres =

73.2◦ .
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Figure 4: The spectral shape of R calculated for the

structure presented in Fig. 2 at different values of

I in/Isat. Ns × f12 = 1011 cm−2, �Γ = 3.8 meV,

θ = θres = 67.91◦ .


