Edge Emitting InP based Quantum Cascade Microlasers with deeply etched Bragg Mirrors

Wurzburg University

J. Semmel, L. Nähle, S. Höfling and A. Forchel

Technische Physik, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Objective

Single mode emission of lasers operating in the mid-infrared wavelength regime is desirable for a broad field of applications (e.g. gas-sensing)

Short cavity length leads to a large Fabry-Perot-modes spacing and hence to single mode emission

Microlasers with deeply etched distributed Bragg reflectors

MBE-Growth

Structure is grown on lowly doped InP-substrate by a gas-source MBE-system

35 cascades of lattice matched InAlAs/InGaAs add up to a total layer thickness of 6.7 μm

Sample- / Device-Processing

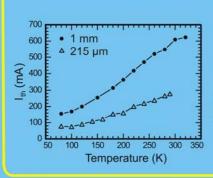
Bragg reflectors defined by e-beam lithography

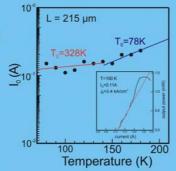

One-step dry etching process by inductively coupled plasma etching provides smooth edges and perpendicular sidewalls without damaging Al-containing layers

Minimum etching depth of 7 μm required \rightarrow dry etching with Cl₂/Ar-mixture

Etching parameters: Cl./Ar-mixture ratio 1:3, chamber pressure 0.003 mbar, temperature = 100° C, time = 10 min, HF/ICP-powers 175/350 W

Cleaved devices are soldered epi-side up on copper heatsinks


J. Semmel et al., APL, 91, 071104 (2007)



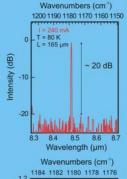
Basic Characterization

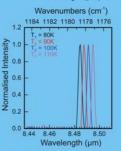
Light output characteristics of a 215 μm long cavity with Bragg reflectors at both ends (HR: 5; AR: 3) show good temperature stability up to 150 K

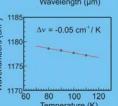
I_{th} = 110 mA @ 100 K

Comparison of threshold current of two identically processed devices with different cavity lenghts yield a mirror reflectivity of ~ 0.7

Spectral Characteristics


Devices are measured in pulsed operation (pulse width: 100 ns / repetition rate: 9 kHz)


High resolution emission spectra of a 165 µm glong device show SMSR of about 20 dB


Single mode emission can be ascribed to larger Fabry-Perot-modes spacing because of shorter cavity length

Wavelength shifts with increasing heat sink temperature with a ratio of $\Delta v = -0.05 \text{ cm}^{-1}/\text{K}$

Comparable temperature dependent shift of wavelength can be observed for DFB lasers with surface grating

Acknowledgement

Thanks to A.Wolf and M. Emmerling for technical assistance during device processing. The financial support of the state government of Bavaria is gratefully acknowledged.

Summary

In conclusion, quantum cascade microlasers with deeply etched one-dimensional photonic crystals (Bragg reflectors) based on InP have been fabricated. In order to achieve the required high aspect ratio and etching depth of at least 7 μm a one-step dry etching process has been developed. The devices show single mode emission with a SMSR of \sim 20 dB due to a larger Fabry-Perot-modes spacing with decreasing cavity lengths.