Intersubband relaxation dynamics in InGaAs/AIAsSb multiple quantum wells

C. V-B. Tribuzy^a, <u>H. Schneider^a</u>, S. Ohser^a, S. Winnerl^a, J. Grenzer^a, M. Helm^a, J. Neuhaus^b, T. Dekorsy^b, K. Biermann^c, and H. Künzel^c

^a Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden Rossendorf, P. O. Box 510119, 01314 Dresden, Germany

^b Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz, Germany.

Samples

° K. Biermann and H. Künzel are with the Fraunhofer Institute for Telecommunications (Heinrich Hertz Institut), 10587 Berlin, Germany

≤ 50-period InGaAs/AIAsSb MQWs

Sample

A

В

Sample

grown by MBE

С

doped in the barrier

4 nm QW

3 nm QW oram QW <u>ह</u> ∎ doped in the well Same!

3 nm QW

n-type, 3x10¹² cm⁻² per QW

Abstract We report on a femtosecond pump-probe study of intersubband relaxation dynamics in narrow InGaAs/AIAsSb quantum wells. Intervalley scattering manifests itself by biexponential behavior with relaxation times of a few ps. Pumping slightly below resonance induces a transient probe absorption, which can be interpreted in terms of electron heating within the first subband.

elength (µm)

0.51 e\

0.39 eV

0.5

0.3 0.4 0.5 0.6 Photon Energy (eV)

Introduction

- Lattice matched InGaAs/AlAsSb grown on InP exhibits a large conduction band discontinuity (>1eV) allows and intersubband transition wavelengths in the near infrared.
- Such short wavelengths require narrow quantum wells (QWs) of <3 nm where the first excited state inside the QW may be raised above indirect (X or L) valleys within the Brillouin zone.
- Quantum cascade lasers involving subbands above the indirect minimum have recently been reported [1].

Intersubband relaxation

- Femtosecond pump-probe measurements indicate an exponential decay of the transient transmission at early delay times for samples A (a), B (b), and C (c), with time constants of 0.8 to 1.5 ps.
- At larger delay, the relaxation dynamics strongly depends on the QW thickness and doping. While single-exponential decay was observed in 4nm QWs, a second exponential component was present in 3 nm QWs, indicating several competing relaxation channels. Here electron transfer to X- and L-states in the barriers (b), which exists in the case of ntype modulation doping, or in the wells (c) is energetically possible.
- According to an effective three-level model (inset of (c)), measured time constants are expressed as τ_{slow} = τ_{X1} and $\tau_{fast} = 1/(1/\tau_{21} + 1/\tau_{2X})$. Our interpretation is consistent with the respective conduction band edge profiles and occupation probabilities at the Γ - (black lines) and Xpoint (red lines) (d - f). These results indicate that intervalley scattering in QWs can occur in the ps regime, i.e., much slower than in bulk semiconductors [2].
- The latter result is further confirmed by the recent observation of intersubband lasing involving states above indirect minima of the well material [1].

Intrasubband cooling

- In the case of sample A, pumping below resonance (2.43µm) results in a reversal of the probe signal, i.e., an absorptive contribution which competes with the usual bleaching.
- Explanation: Nonparabolicity leads to different inplane dispersion (different effective masses) of the individual subbands, which causes inhomogeneous broadening. Therefore, electrons with high k-values are predominantly excited on the low-energy side of the resonance. After intersubband excitation, electrons undergo electron-electron scattering. The electron temperature in the lowest subband increases. leading to enhanced absorption, i.e., reduced bleaching. This hot-electron distribution subsequently decays within a few ps (intrasubband cooling).
- This interpretation is further supported by the observation that it occurs most strongly in the narrowest QWs.
- An additional, extremely slow component (>> 100 ps) is caused by the return of electrons from the potential minimum in the barriers that is present in these modulation-doped structures [2],.

Conclusion

- Femtosecond pump probe measurements on narrow InGaAs/AIAsSb QWs provide evidence for intervalley scattering, which is however surprisingly ineffective.
- This explains why quantum cascade lasers still work at wavelengths as short as 3 µm.
- Observation of induced absorption yields signatures of intrasubband heating due to the nonparabolic band structure of narrow QWs.

[1] D. G. Revin et al., Appl. Phys. Lett. 90, 021108 (2007). [2] C. V.-B. Tribuzy et al., Appl. Phys. Lett. 89, 171104 (2006). C. V.-B. T. acknowledges support from the Alexander-von-Humboldt Foundation

.....

Forschungszentrum Dresden Rossendorf

Member of the Leibniz Association • Bautzner Landstr. 128 • 01328 Dresden/Germany • http://www.fzd.de Contact: H. Schneider • Institute of Ion Beam Physics and Materials Research • Email: h.schneider@fzd.de • Phone: +49 351 260 -2880