Control and measurement of carrier dynamics in InSb QWs

K. Nontapot, R.N. Kini, G. A. Khodaparast, Department of Physics, Virginia Tech, USA

N. Goel, S. J. Chung, M. B. Santos, Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, USA

I. Introduction

Narrow Gap Semiconductors (NGSs) such as InSb have

Strong spin-orbit coupling, large Rashba effect,

and high carrier mobilities. One of the prime candidate for fast switching and carrier transport application

Exploring carrier dynamics provides a better understanding of many phenomena such as scattering, quasi-equilibrium carrier distribution, and carrier cooling.

Why InSb?

bulk III-V	m*/m 0	g-factor	E(k)	Band Gap (eV)
GaAs	0.067	-0.5	Least non- parabolic	1.4
InAs	0.023	-15	More non- parabolic	0.42
InSb	0.014	-51	Most non- parabolic	0.24

II. Experimental Technique

Pump Proble A. Waterwater and Market and Market

Time-resolved measurement

Degenerate pump-probe spectroscopy(One-color)

Transmission geometry, pump fluence ~ 5mJ/cm²

InSb has the smallest effective mass, largest g-factor, smallest energy gap, and strongest spin-orbit interaction.

InSb QWs Strucures

Sample	Density	Density Mobility QW width		Al concentration	
	(cm^-2)	(cm^2/Vs)	(nm)		
S360 "A"	2.2x10^11	73,000	30	9%	
S499	1.8x10^11	135,000	30	9%	
S769 "S"	2 x10^11	97,000	30	9%	
S939 "S"	4.4x10^11	96,000	11.5	15%	
S591(24QWs)	undoped	N/A	30	9%	

Non-degenerate pump-probe spectroscopy (Two-color)

Non-equilibrium carrier density

probe carrier relaxation time by time resolved measurement

Experimental Setup

"A"=Asymetric QW, "S"=Symmetric QW

Energy levels and possible transitions for 15(9)% Al samples

Energy separation at different levels and their corresponding wavelengths

	CBI-HHI	CB2-HHI	CBI-HH2	CB2-HH2	CBI-HH3	CB2-HH3	CBI-LHI	CB2-LHI
15%	318mev	425mev	342 mev	449mev	386mev	493mev	386mev	493 mev
	3.9um	2.9 um	3.6 um	2.7 um	3.2 um	2.5 um	3.2 um	2.5 um
9%	264mev	302mev	266mev	304mev	N/A	N/A	320mev	N/A
	4.7um	4.1um	4.66um	4.07um			3.87um	

* possible transitions are shown in red

III. Results

Reflection geometry(one/two color)

IV. Conclusion

Carrier relaxation time of different transition levels

sample	СВІ-ННІ	HH2-CB2	CBI-LHI	outside the well
15% Al	20 ps	10 ps	2ps	10 ps
9% Al	14 ps	10-12ps	4-10 ps	5-14 ps

- The observed carrier relaxation time from CBI-HHI>HH2-CB2>CBI-LHI.
- Carrier relaxations are different in low fluence (~50 ps) and high fluence regimes (~4-14 ps).
- Momentum relaxation can be a dominate relaxation mechanism in these structures
- Strong temperature dependence is observed in sample with high AI concentration

Supported by : NSF-DMR-0507866, DMR-0618235, and DMR-0520550, Jeffress-Trust Fund-J748, Advance VT

