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I. Introduction

         Narrow Gap Semiconductors (NGSs) such as InSb have                                         

                 Strong spin-orbit coupling, large Rashba effect, 

                              and high carrier mobilities.

 One of the prime candidate for fast switching and carrier transport    

application

 Exploring carrier dynamics provides a better understanding of 

many phenomena such as scattering, quasi-equilibrium carrier dis-
tribution, and carrier cooling.

                              Why InSb?

bulk III-V     m*/m0 g-factor E(k)
Band Gap

(eV)

GaAs 0.067 -0.5
Least non-
parabolic

1.4

InAs 0.023 -15
More non-
parabolic

0.42

InSb 0.014 -51
Most non-
parabolic

0.24

        InSb has the smallest effective mass, largest g-factor, 

       smallest energy gap,and strongest spin-orbit interaction.

                    InSb QWs Strucures

Sample Density

(cm^-2)

Mobility 

(cm^2/Vs)

QW width

(nm)

Al concentration

    S360 “A”    2.2x10^11        73,000         30          9%

    S499 “S”    1.8x10^11      135,000         30          9%

   S769 “S”    2 x10^11        97,000         30          9%

   S939 “S”    4.4x10^11       96,000        11.5         15%

  S591(24QWs)      undoped        N/A         30          9%

“A”=Asymetric QW, “S”=Symmetric QW

            Energy levels and possible transitions for 15(9)% Al samples

Energy separation at different levels and their corresponding wavelengths
CB1-HH1 CB2-HH1 CB1-HH2 CB2-HH2 CB1-HH3 CB2-HH3 CB1-LH1 CB2-LH1

15% 318mev

3.9um

425mev

2.9 um

342 mev

3.6 um

449mev

2.7 um

386mev

3.2 um

493mev

2.5 um

386mev

3.2 um

493 mev

2.5 um

9% 264mev

4.7um

302mev

4.1um

266mev

4.66um

304mev

4.07um

N/A N/A 320mev

3.87um

N/A

* possible transitions are shown in red

II. Experimental Technique

             Time-resolved measurement

         

Degenerate pump-probe spectroscopy(One-color)

Non-degenerate pump-probe spectroscopy (Two-color)

       Interband absorption of polarized light

                                 

                       Non-equilibrium carrier density

   probe carrier relaxation time by time resolved measurement

                  Experimental Setup

III. Results

       Reflection geometry(one/two color)

Transmission geometry, pump fluence ~ 5mJ/cm2

IV. Conclusion
            Carrier relaxation time of different transition levels

sample CB1-HH1 HH2-CB2 CB1-LH1 outside the well

     15% Al        20 ps        10 ps          2ps         10 ps

      9% Al        14 ps      10-12ps         4-10 ps         5-14 ps

• The observed carrier relaxation time from CB1-HH1>HH2-CB2>CB1-
LH1.

• Carrier relaxations are different in low fluence (~50 ps) and high fluence 
regimes (~4-14 ps).

• Momentum relaxation can be a dominate relaxation mechanism in these 
structures

• Strong temperature dependence is observed in sample with high Al con-
centration 
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